Федеральное государственное бюджетное учреждение науки Ордена Ленина и Ордена Октябрьской Революции Институт геохимии и аналитической химии им. В.И. Вернадского Российской академии наук (ГЕОХИ РАН)

На правах рукописи

Pour

Сомсикова Алина Вадимовна

Геохронология и изотопные характеристики источников вещества магматических и метаморфических пород Кичерской зоны западной части Байкало-Муйского складчатого пояса

Специальность 25.00.09 – геохимия, геохимические методы поисков полезных ископаемых

Диссертация на соискание ученой степени кандидата геологоминералогических наук

Научные руководители:

академик, доктор геол.- мин. наук Костицын Ю.А. канд. геол.- мин. наук Федотова А.А.

Введение4
Глава 1. Обзор предшествующих исследований Кичерской зоны, постановка задач работы
1.1.1. История геохронологического изучения гранулитового комплекса
Кичерской зоны15
1.1.2. Термобарометрические параметры формирования пород гранулитового комплекса, предшествующие исследования17
1.2. История геохронологического изучения метабазитов нюрундуканской свиты и габброидов запада Байкало-Муйского пояса18
1.3. История геохронологического изучения гранитоидов Кичерской зоны21
Глава 2. Геологическое строение междуречья Слюдянка-Рель
2.1 Гранулитовый комплекс Кичерской зоны27
2.1.1. Кристаллические сланцы, эндербиты и чарнокиты
2.1.2. Амфиболитизированные габброиды и ортоамфиболиты
2.2. Пироксенит-троктолит-габбровый комплекс массива Тонкий мыс
2.3. Тоналит-плагиогранит-гранитная серия
Глава 3. Материалы и методы исследования
3.1. Полевые методы отбора проб и пробоподготовка
3.2. Определение состава породообразующих оксидов и содержаний элементов- примесей в породах
3.3. Изотопно-геохимические методы исследования. Изучение Rb-Sr и Sm-Nd изотопных систем горных пород
3.4. Изотопно-геохронологическое исследование циркона
3.4.1. Выделение циркона из породы. Изготовление шашек
3.4.2. Определение содержаний редких и редкоземельных элементов в цирконе47
3.4.3. Изучение внутреннего строения циркона
3.4.4. Исследование U-Pb изотопной системы циркона
Глава 4. Результаты изучения пород гранулитового комплекса Кичерской зоны Байкало- Муйского пояса
4.1. Петрографический состав, петрохимия, геохимия гранулитового комплекса54
4.2. Термобарометрическое исследование пород гранулитового комплекса Кичерской зоны Северного Прибайкалья
4.3. Rb-Sr и Sm-Nd изотопно-геохимические данные для гранулитов
4.4. Морфология, геохимические и U-Pb изотопные исследования циркона
Глава 5. Пироксенит-троктолит-габбровая ассоциация массива Тонкого мыса
5.1. Петрографический состав, петрохимия, геохимия массива Тонкий мыс
5.2. Rb-Sr и Sm-Nd изотопно-геохимические исследования пород пироксенит- троктолит-габбрового комплекса Тонкого мыса

Оглавление

Глава 6. Тоналит-плагиогранит-гранитная серия дайкового комплекса Кичерской зоны 6.1. Петрографический состав, петрохимия, геохимия пород тоналит-плагиогранит-6.2. Rb-Sr и Sm-Nd изотопно-геохимические исследования пород тоналит-6.3. Исследование U-Pb изотопной системы циркона из пород тоналит-плагиогранитгранитной серии Кичерской зоны......95 Глава 7. Обобщённая характеристика высокоградных пород, гипабиссальных гранитоидов и габброидов Кичерской зоны. Этапы развития западной части Байкало-Изотопно-геохимическая 7.1.1. Обсуждение результатов. гетерогенность 7.1.2. Сравнение гранулитового комплекса Кичерской зоны с Северобайкальским 7.2. Неоднородность тоналит-плагиогранит-гранитной серии Кичерской зоны117 7.4. Этапы гранитодного магматизма Кичерской зоны Байкало-Муйского складчатого

введение

<u>Актуальность исследования.</u> Процессы, которые проходят в глубоких горизонтах коры вулканических дуг, практически не доступны для исследований в современных обстановках. Комплексное изучение глубинных срезов земной коры, выведенных на дневную поверхность подвижных поясов, важно для понимания закономерностей геодинамических режимов активных окраин океанов и преобразование ювенильного вещества в этих структурах. Уровни средней и нижней коры подвижных поясов позднего неопротерозоя и фанерозоя в редких случаях доступны для прямого изучения.

Кичерская зона, слагающая западную часть складчатого неопротерозойского Байкало-Муйского пояса в юго-восточном орогенном обрамлении Сибирской платформы, представляет собой подходящий объект для подобного исследования. Южная часть Кичерской зоны хорошо обнажена, в её составе присутствуют комплексы пород различных уровней среза земной коры, разнообразного генезиса и широкого диапазона составов. В работе представлены новые, полученные автором, результаты исследования изотопных систем пород и циркона гранулитового комплекса, ультрамафит-мафитового комплекса Тонкий мыс и тоналит-плагиогранит-гранитной серии гипабиссального комплекса Кичерской зоны Байкало-Муйского складчатого пояса (Северное Прибайкалье).

При изучении полигенетических зёрен циркона гранулитового комплекса выявлены зоны магматического и метаморфического происхождения. Датированные по ним события важны при восстановлении этапов формирования позднедокембрийского складчатого пояса. Комплекс полученных геохимических и изотопно-геохимических данных по высокометаморфизованным породам является ценным источником информации для интерпретации процессов взаимодействии мантийного и раннедокембрийского корового вещества в глубинных зонах подвижных поясов.

В составе гранитоидных даек Кичерской зоны западной части Байкало-Муйского пояса выделены плагиограниты, по геохимическим характеристикам отвечающие адакитам. Дайки к гипабиссальному комплексу. Ко времени относятся внедрения плагиогранитоидных магм по системе трещин гранулиты были выведены в верхние горизонты коры. Возможность образования адакитов в пределах складчатых поясов ограничена узким лиапазоном условий. Это лелает алакиты важным палеогеодинамическим индикатором, указывающим на частичное плавление мафитовой части литосферы океанического типа в глубинных частях зон субдукции (Defant, Drummond, 1990; Defant, Kepezhinskas, 2001 и др.) либо на плавление в нижней части мощной континентальной коры над зоной субдукции (Petford, Atherton, 1996), или в

конвергентных условиях вне действующей субдукционной системы (Xu et al., 2002 и др.). Установлено, что адакиты и гранитоиды с геохимическими характеристиками адакитов маркируют границы столкновения литосферных плит.

Перечисленные выше особенности исследования определяют его актуальность.

<u>Цель и задачи исследования.</u> Цель работы состоит в установлении временной последовательности формирования комплексов горных пород по геологическим и изотопно-геохронологическим данным, определении времени завершающей складчатости и гранитообразования Кичерской зоны Байкало-Муйского пояса и характеристике источников вещества гранитоидов, габброидов и метаморфических пород. Для достижения поставленной цели решены следующие задачи:

- Получить оценки времени формирования и/или преобразования пород гранулитового комплекса;
- Получить информацию об изотопно-геохимических характеристиках источников вещества пород гранулитового комплекса и гранитоидов на основе изучения их Rb-Sr и Sm-Nd изотопных систем;
- Получить Rb-Sr и Sm-Nd изотопно-геохимические характеристики источников вещества пород ультрамафит-мафитовой серии района междуречья Слюдянка-Рель для определения ее происхождения и сравнения с данными по ультрамафитмафитовым комплексам западной части Байкало-Муйского пояса;
- Выявить и датировать гранитоиды, маркирующие этап завершения тектонической активности в регионе на поздненеопротерозойском этапе;
- Обосновать последовательность этапов формирования структуры Кичерской зоны Байкало-Муйского пояса к концу поздненеопротерозойского времени.

<u>Объектами исследования</u> являются породы гранулитового комплекса, троктолиты пироксенит-троктолит-габбрового комплекса Тонкий мыс и комплекса секущих даек тоналит-плагиогранит-гранитной серии Кичерской зоны (северо-западное побережье оз. Байкал).

<u>Аналитические методы.</u> Петрографические особенности пород изучены автором на поляризационном микроскопе. Определение содержания оксидов петрогенных элементов в породах проведено методом РСФА (ГЕОХИ РАН, аналитик Т.Г. Кузьмина) и РФА (ГИН РАН, под руководством С.М. Ляпунова), редких и редкоземельных элементов – методом ICP-MS (ИМГРЭ, под руководством Р.У. Кабировой).

Циркон выделен для геохронологического исследования из пород по стандартной методике с использованием флотационного столика, электромагнитной сепарации и тяжёлых жидкостей в ИЗК СО РАН и в лаборатории минералогического и трекового анализа ГИН РАН.

Катодолюминисцентная съёмка циркона из двух проб чарнокитоидов проводилась при участии автора в ЦКП МФТИ на растровом электронном микроскопе Quanta 200 МК2 с приставкой Gatan для изучения катодолюминесценции в диапазоне длин волн от 300 до 1000 нм. Катодолюминесцентная съёмка циркона из трёх проб гранулитового комплекса проводилась в SHRIMP–центре Академии геологических наук Китая (г. Пекин) на электронном микроскопе Hitachi SEM S-3000N с приставкой Gatan для изучения катодолюминесценции. Изучение внутреннего строения циркона из чарнокитоидов в лаборатории локальных методов исследования вещества геологического факультета МГУ на сканирующем электронном микроскопе «Jeol JSM-6480LV» с энергодисперсионным спектрометром «INCA-Energy 350». Для циркона из двух проб чарнокитоидов и апочарнокитовых гнейсов проведена съёмка на растровом электронном микроскопе TESCAN MIRA3 в ГЕОХИ РАН в режимах катодолюминесценции (CL) и вторичных электронов (SE) при ускоряющем напряжении 15-20 кВ (аналитик Иванова М.А.).

U-Pb геохронологическое исследование проводилось с использованием метода лазерной абляции (лазер UP-213) на масс-спектрометре Element-XR с ионизацией в индуктивно-связанной плазме (LA-ICP-MS) в лаборатории изотопной геохимии и геохронологии ГЕОХИ РАН по методике (Костицын, Аносова, 2013). Анализ двух проб циркона из эндербито-гнейсов проводился проф. А. Крёнером на SHRIMP-II в SHRIMP– центре Академии геологических наук Китая (г. Пекин).

Изотопно-геохимическое исследование Rb-Sr и Sm-Nd изотопных систем на массспектрометре TRITON проведено в лаборатории изотопной геохимии и геохронологии ГЕОХИ РАН.

<u>Фактический материал.</u> В основу диссертации легли результаты аналитических исследований, проведённых автором в лаборатории изотопной геохимии и геохронологии ГЕОХИ РАН. Образцы пород для изотопного изучения отобраны при участии автора в ходе полевых работ в Кичерской зоне Байкало-Муйского пояса (2009 и 2012 гг.), использовались также образцы из геологических коллекций магматических и метаморфических пород А.А. Разумовского, А.А. Федотовой и Е.В. Хаина (2007, 2009, 2012 гг.). При обработке полевых

геологических материалов, автором изучено более 200 прозрачных шлифов, проанализировано около 50 проб на петрогенные и редкие элементы.

Пробы гранулитов богучанского комплекса и гранитоидов юга Кичерской зоны отобраны для последующего выделения циркона в объёме не менее 12 кг каждая при участии автора. Циркон был выделен из девяти проб. Из одной пробы гранитоидов было выделено менее 10 кристаллов циркона, что не является представительным материалом для геохронологической характеристики породы. Циркон из восьми проб изучен U-Pb изотопными методами. Строение циркона из девяти проб гранулитов и гранитоидов изучалось на электронном растровом микроскопе, а затем в полированных шашках методами катодолюминесценции.

U-Pb изотопная система циркона восьми проб гранулитов богучанского комплекса и гранитоидов исследована автором методом лазерной абляции (порядка 400 точек анализов) в лаборатории изотопной геохимии и геохронологии ГЕОХИ. Три из них дополнительно исследованы проф. А. Крёнером на SHRIMP II во время выполнения совместных исследований в рамках проекта IGCP 592 (около 40 точек анализа). Циркон одной из проб эндербитов первоначально был исследован автором классическим U-Pb изотопным методом по трём размерным фракциям. Методом лазерной абляции получены данные по редкоэлементному составу циркона из одной пробы гранулитов (21 точка анализа) и одной пробы гранитоидов (14 точек анализа), сделан расчёт температуры кристаллизации циркона. Проведено изотопно-геохимическое исследование Rb-Sr и Sm-Nd изотопных систем 25 образцов магматических и метаморфических пород Кичерской зоны. Определены условия метаморфизма гранулитов (расчёты выполнены П.Я. Азимовым (ИГГД РАН)).

Личный вклад. При участии автора проводились полевые работы в районе междуречья Слюдянка – Рель (2009, 2012), опробование и составление геологической характеристики пород. Автором проведено петрографическое и минералогическое изучение и выбор наиболее представительных образцов гранулитового комплекса и тоналит-плагиогранитгранитной серии для выделения циркона. Зёрна циркона были подготовлены к геохронологическому исследованию, проведено минералогическое изучение циркона, освоен классический U-Pb изотопный метод; изготовлены шашки с цирконом, исследованы редкоземельный состав и U-Pb изотопная система циркона методом лазерной абляции, проведены расчёт температуры кристаллизации циркона и статистическая обработка данных. Образцы магматических и метаморфических пород Кичерской зоны подготовлены автором к химическому разложению, взяты навески пород и трасеров, выделены Rb, Sr, Sm и Nd на хроматографических колонках, проведены измерения на масс-спектрометре

TRITON. Все полученные результаты систематизированы, проведено сравнение с данными ранее проведённых исследований по литературным материалам.

Защищаемые положения:

- 1. В составе богучанского гранулитового комплекса западной части Байкало-Муйского пояса присутствуют породы двух типов: эндербито-гнейсы и чарнокитоиды, с акцессорными зёрнами циркона разного внутреннего строения. Протолит эндербито-гнейсов кристаллизовался 826 ± 8 млн лет назад, затем 640 ± 10 млн лет назад породы испытали метаморфизм в условиях гранулитовой фации. Одновременно с этим метаморфизмом (640 млн лет) образовались чарнокитоиды. Породы богучанского гранулитового комплекса, согласно полученным U-Pb изотопным данным по зёрнам циркона, испытали ретроградные метаморфические преобразования амфиболитовой фации в интервале 630 600 млн лет назад.
- Установлена гетерогенность протолитов пород богучанского гранулитового комплекса. Протолиты двупироксеновых и ортопироксеновых эндербито-гнейсов (модельный возраст T_{Nd2} = 2.3 – 2.2 млрд лет) были образованы из обогащённого материала, преимущественно раннедокембрийской коры (ε_{Nd}(0.8 млрд лет) = -9.6...-8.0, ε_{Sr}(0.8 млрд лет) = +34...+46)). Чарнокитоиды характеризуются позднемезопротерозойским Nd-модельным возрастом (T_{Nd2} = 1.3 – 1.1 млрд лет) и значениями ε_{Nd}(0.6 млрд лет) = +0.7...+3.0, ε_{Sr}(0.6 млрд лет) = -22...+4).
- 3. Тоналиты-плагиограниты-лейкограниты юго-запада Кичерской зоны Байкало-Муйского пояса образуют самостоятельный гипабиссальный комплекс. В его составе присутствуют соответствующие адакитам породы с фракционированным спектром РЗЭ, низкими содержаниями тяжёлых РЗЭ, Ү, высокими концентрациями Sr, $\varepsilon_{Nd}(T) = +4.7...+7.0; \varepsilon_{Sr}(T) = -17...-23).$ Sm-Nd изотопно-геохимические характеристики комплекса ($\varepsilon_{Nd}(T) = +3.2...+7.1$) указывают пород на разнородный состав неопротерозойской коры островодужного или океанического типа.
- 4. Время кристаллизации гранитоидов гипабиссального комплекса Кичерской зоны оценивается в 595±5 млн лет согласно данным U-Pb изотопного исследования кристаллов циркона. Не позднее этого времени богучанский гранулитовый комплекс Кичерской зоны был выведен в верхние горизонты коры Байкало-Муйского складчатого пояса.

<u>Апробация работы</u>. Основные научные положения, которые представлены в диссертации, опубликованы в 29 печатных научных работах, в том числе 3 работы в журналах из перечня ВАК (Геотектоника, Journal of Asian Earth Sciences, Геохимия).

Результаты работ докладывались на российских и международных научных конференциях, в том числе на ежегодных совещаниях «Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса (от океана к континенту)» в Иркутске (2010, 2012, 2013, 2015, 2018, 2020 и 2021 гг.), на Ломоносовских чтениях на кафедре геохимии МГУ (2011, 2012, 2014 гг.), на молодёжной конференции «4-е Яншинские чтения, современные вопросы геологии», 2011, в Москве; на 5-ой Российской конференции по изотопной геохронологии: Геохронометрические изотопные системы, методы их изучения, хронология геологических процессов, 2012, в Москве; на международной школе по наукам о Земле 2013, в Одессе, Украина, на XX, XXI и XXII Симпозиумах по геохимии изотопов имени А.П. Виноградова, 2013, 2016, 2019 в Москве, на XII Всероссийской конференции по изотопной геохронологии сучастием зарубежных учёных, 2015 в Петрозаводске.

Научная новизна и практическое значение работы. Впервые в междуречье Слюдянка – Рель охарактеризован гипабиссальный тоналит-плагиогранит-лейкогранитный комплекс, ранее не выделявшийся в качестве самостоятельного. Показано, что в составе комплекса присутствуют гранитоиды, по геохимическим характеристикам соответствующие адакитам.

При решении современных геологических задач требуется сравнение данных U-Pb изотопного изучения зёрен циркона, полученных методом лазерной абляции и методом масс-спектрометрии вторичных ионов. В диссертационном исследовании проводится сопоставление результатов этих двух методов, полученных по зёрнам из одних и тех же фракций циркона пород гранулитового комплекса. В работе применяется современный подход к изучению U-Pb изотопной системы многофазных кристаллов циркона методами локального анализа LA-ICP-MS и SHRIMP в сочетании с интерпретацией изображений катодолюминесценции и с рассмотрением данных по концентрациям Th и U в цирконе. Это позволило выделить по полученным результатам отдельные магматическое и метаморфическое события, время образования и преобразования зёрен циркона. Изложенный выше подход применим к схожим высокометаморфизованным комплексам.

Полученный материал может использоваться для уточнения существующих геологических карт, а также при разработке региональных металлогенических моделей.

Благодарности. Автор выражает признательность преподавателям и сотрудникам кафедры геохимии МГУ им. М.В.Ломоносова за дружественную учебную обстановку и за возможность познакомиться с изотопной геохимией и геохронологией.

Материалы для написания диссертации были получены в период работы автора в лаборатории геологии офиолитов (позднее, лаборатории геологии складчатых поясов) ГИН РАН и в лаборатории изотопной геохимии и геохронологии ГЕОХИ РАН. Автор выражает искреннюю благодарность за поддержку, интересную совместную работу и обсуждение вопросов геологии, геохимии, изотопной геохимии и геохронологии Байкало-Муйского складчатого пояса сотрудникам обеих лабораторий.

Автор выражает глубокую благодарность своим научным руководителям А.А. Федотовой и Ю.А. Костицыну за внимательное отношение и постоянную помощь на всех этапах выполнения работы.

Автор благодарит А.А. Разумовского за создание геологической основы изотопногеохронологического исследования и Е.В. Хаина за предоставленный геологический материал, консультации и содействие в проведении полевых работ, Е.Ю. Рыцка за поддержку и координацию полевых работ, М.О. Аносову, Е.В. Бибикову, Т.И. Кирнозову, Н.М. Ревяко, М.М. Фугзан за помощь в освоении методик изотопных исследований, С.Ю. Лапшина и А.В. Ляликова за изготовление рениевых лент для Rb-Sr и Sm-Nd изотопных анализов, П.Я. Азимова, О.В. Астраханцева и Г.Е. Некрасова за консультации и помощь при обработке материалов, А.А. Арискина, А.Ю. Бычкова, С.А. Паланджяна, В.Б. Полякова, А.А. Щипанского за ценные советы и рекомендации, Е.В. Коростылёва за помощь в проведении люминесцентной съёмки по циркону в ЦКП МФТИ, В.О. Япаскурта за помощь в проведении исследования внутреннего строения циркона методом обратнорассеянных (backscattered) электронов, М.А. Иванову за помощь в проведении катодолюминесцентной съёмки по циркону в ГЕОХИ, А.Крёнера за заинтересованность к теме и участие в работе над получением данных и интерпретацией результатов исследований.

Без научного коллектива, в котором автор постоянно находился, никакие достижения в области геологии, геохимии, изотопной геохимии и геохронологии были бы невозможными, и автор искренне благодарен всем, кто помог ему в написании кандидатской диссертации.

Работа выполнена в соответствии с планом научно-исследовательских работ лаб. изотопной геохимии и геохронологии ГЕОХИ РАН и лаб. геологии складчатых поясов ГИН

РАН, а также при поддержке РФФИ (проекты №№ 110501052, 120531246, 130500048, 140531042, 140500607, 163500600), Фонда развития отечественной геологии, МПГК (проект № 592 "Continental construction in Central Asia").

<u>Структура и объём работы</u>. Диссертация состоит из введения, семи глав и заключения, содержит 69 рисунков и 24 таблицы, всего 186 страниц. Список литературы включает 210 наименований.

Глава 1. Обзор предшествующих исследований Кичерской зоны, постановка задач работы

Байкальская горная область входит в состав северо-восточной части Центрально-Азиатского складчатого пояса (ЦАСП). При ширине до тысячи километров ЦАСП простирается в субширотном направлении на несколько тысяч километров на территориях России, Монголии, Китая, государств Средней Азии. По существующим представлениям, формирование пояса есть результат длительной и сложной эволюции одного из крупнейших в истории Земли океанов – Палеоазиатского, история существования которого охватывает период времени более, чем в 700 млн лет.

Геологическое строение Байкало-Муйского пояса, его элементов, основные вопросы строения севера Байкальской горной области и вопросы геохронологии ключевых объектов региона рассмотрели в монографиях, диссертационных исследованиях Балыкин П.А. (1986), Беличенко В.Г. (1977), Булгатов А.Н. (1983), Кислов Е.В.(1998), Конников Э.Г. (1999), Мазукабзов А.М. (2003, 2006), Минина О.Р. (2014), Переляев В.И. (2003), Песков А.И. (1990), Скублов С.Г (1999), Сотникова И.А. (2009), Цыганков А.А. (2005) и в статьях вместе со своими соавторами многие учёные: Амелин Ю.В. (1990, 1997, 2000), Андреев А.А. (2015, 2018), Арискин А.А. (2013, 2015), Богнибов В.И. (2000), Божко Н.А. (1995, 1999а, 1999б), Булгатов А.Н. (2015), Бухаров А.А. (1985, Bukharov et al., 1990) Булдыгеров В.В. (1988, 1995), Ванин В.А. (2014, 2018), Вишневская И.А.(2018), Владимиров А.Е. (2004), Врублевская Т.Т. (2001, 2003, 2004), Габов Н.Ф. (1984), Гладкочуб Д.П. (2013), Гордиенко И.В. (2006, 2009, 2010, 2019, 2021), Грудинин М.И. (1979, 1989, 2002), Гусев Г.С. (1992), Дмитриева Н.В. (2013), Добрецов Н.Л.(1983, 1985, 1991, 2013) Dobretsov et al., 1992), Добржинецкая Л.Ф. (1985, 1989), Донская Т.В. (2008, 2013), Зорин Ю.А. (1997, 2009), Изох А.Э. (1998), Кирмасов А.Б. (1998, 2000), Клитин К.А. (1970, 1974, 1975), Коваленко В.И. (1999, Kovalenko et al., 2004), Ковач В.П.(2000), Козырева И.В.(1990), Конников Э.Г. (1986, 1991, 1992, 1994а, 1994б), Кузьмин М.И., Лебедева Ю.М. (2016), Макрыгина В.А. (1989, 1993, 2005), Минина О.Р. (2016), Митрофанов Г.Л. (1978, 1981), Неймарк Л.А. (1990, 1991, 1995, 1996; 1998, 2005), Орсоев Д.А. (2021), Петрова З.И. (1984), Паверман В.И. (Powerman et al., 2015), Покровский Б.Г. (2006, 2015), Руженцев С.В. (2012), Рыцк Е.Ю. (1999, 2001, 2004, 2007а, 2007б, 2011, 2012, 2017), Салоп (1964, 1967, 1982), Сальникова Е.Б., Семихатов М.А., Скублов С.Г.(1994), Скузоватов С.Ю. (2016, 2019), Срывцев Н.А. (1992), Станевич А.М. (1992, 2007), Федоровский В.С. (1995, 2010), Хаин В.Е., Хоментовский В.В. (2002, 2004), Хубанов В.Б., Цыганков А.А. (1995, 1996, 1998,

2000, 2005), Чугаев А.В. (2018), Чумаков Н.М.(2007), Шацкий В.С.(1996, 2012, 2014, 2015), Ярмолюк В.В. (2003а, 2003б, 2006, 2013, 2019) и др.

Байкало-Муйский складчатый пояс расположен в северной части Байкальской горной области, к югу от Байкало-Патомского пояса (рис. 1.1; 2.1.А) – области широкого развития неопротерозойских карбонатно-терригенных (Станевич и др., 2007), реже вулканогенных толщ, залегающих на палеопротерозойских породах (1.8-2.0 млрд лет) Северо-Байкальского пояса края Сибирской платформы (Неймарк и др., 1998; Донская и др., 2013). Между Байкало-Муйским и Байкало-Патомским поясами расположена Олокитская зона (Добрецов и др., 1985; Немеров, Станевич, 2001; Зорин и др., 2009) интенсивно дислоцированных пород и рифтогенная Сыннырская структура (Конников и др., 1999; Арискин и др., 2013; Арискин и др., 2015). А.А. Цыганков (2005) рассматривает Олокитскую зону в составе Байкало-Муйского пояса. К югу от Байкало-Муйского пояса находится Байкало-Витимская складчатая система, на границе этих структурных элементов выделяется Прибайкальский метаморфический пояс, играющий роль коллизионного фронта (Руженцев и др., 2012), или Баргузинский метаморфический блок (Зорин и др., 2009). (Удино-Витимская) Байкало-Витимская складчатая система поздненеопротерозойско-кембрийский надсубдукционный пояс, возникший на мезонеопротерозойском гетерогенном фундаменте (Гордиенко и др., 2006; 2010; 2019; 2021; Некрасов и др., 2007; Руженцев и др., 2010; 2012).

Схемы тектонического районирования Байкало-Муйского пояса, предложенные разными исследователями, отличаются друг от друга (Булгатов, 1983; Божко, 1995; Конников, 1999; Цыганков, 2005; Рыцк и др., 2007а). Нюрундуканская зона, в которой расположены объекты исследования (рис. 1.1) выделена согласно схеме (Конников и др., 1999). Она объединяет две зоны, выделявшиеся А.Н. Булгатовым (1983): Кичеро-Мамская на юго-востоке и Тыя-Мамская на северо-западе. Тыя-Мамская зона, в свою очередь, продольно разделена на схеме Э.Г. Конникова (1999) и включена юго-восточным флангом в Нюрундуканскую зону, а северо-западным флангом, обращённым к Сибирской платформе, в Олокитскую зону. Кичерская зона соответствует юго-западному сегменту Нюрундуканской зоны по (Конников и др., 1999) и рассматривается в ряде публикаций (Рыцк и др., 2007а; Рыцк и др., 2013; Ванин и др., 2014).

Е.Ю.Рыцк с соавторами (2007а) считают, что структура Байкало-Муйского пояса представляет сочетание разновозрастных зон, образованных на месте палеотрогов (Кичерская, Парам-Шаманская, Каралон-Мамаканская зоны) и разделяющих их межтроговых зон (Анамакит-Муйская и Янская зоны). В строении Байкало-Муйского

пояса, по мнению других авторов, участвуют реликты неопротерозойских островодужных систем (Конников и др. 1999, Цыганков, 2005). Островодужная природа пояса рассматривается также коллективом авторов, изучающих магматические комплексы (Изох и др., 1998, Рыцк и др., 2007а).

Гранитоиды, PZ

массивы, NPR

осадочный чехол Сибирской платформы NPR – PZ

метаморфические породы

Муйского блока, переработаны в NPR

карбонатные толщи, NPR кембрий

плагиогранитоиды, NPR

Рис. 1.1. Строение Байкало-Муйского пояса (составлено по (Конников и др., 1999) с изменениями (Федотова и др., 2014)).

1.1.1. История геохронологического изучения гранулитового комплекса

Кичерской зоны

Высокоградные метаморфические ассоциации в южном обрамлении Восточно-Сибирской платформы традиционно считались раннедокембрийскими (Салоп, 1964). Поэтому большой интерес вызвали обнаружение (Макрыгина и др., 1989) и определение неопротерозойских возрастов гранулитового комплекса, выявленного в Северном Прибайкалье (Макрыгина и др., 1993). В дальнейшем накопилось достаточное количество геохронологических данных, полученных различными методами (U-Pb, Sm-Nd, Rb-Sr), для широкого спектра пород (габброидов, гранитоидов и др.), с определённостью указывающих на неопротерозойское время формирования Байкало-Муйского пояса и, в частности, участвующих в его строении гранулитов. Результаты предшествующих исследований метабазитов нюрундуканской свиты, а также гранитоидов и ультрамафит-мафитовых интрузий западной части Байкало-Муйского пояса приведены в табл. 1.1 и 1.2 соответственно.

Для Кичерской зоны ранее получены геохронологические данные, характеризующие возраст гранулитов, гнейсов и гранитоидов с разной степенью достоверности. Rb-Sr изотопным методом по 5 образцам эндербитов и чарнокитов (Макрыгина и др., 1993) получено значение возраста 588 ± 50 млн. лет, причём одна точка легла в стороне от изохронной прямой, поэтому расчёт производился по 4 точкам. Из пород гранулитчарнокитового комплекса получены возрасты Pb-Pb методом по цирконам, рассчитанные по изотопному отношению ²⁰⁷Pb/²⁰⁶Pb, равные 570±15 для калишпатизированных чарнокитмигматитов; 690±35 для калишпатового мигматита; 740±15 для плагиомигматита; 905±30 для эпибазитового амфиболитизированного гранулита) (Макрыгина и др., 1993). Авторы статьи заключили, что "процесс чарнокитизации эпибазитовых кристаллосланцев в регионе продолжался более 300 млн. лет, а последняя цифра 570 ± 15 млн. лет, полученная для калишпатизированных чарнокит-мигматитов, согласуется с результатами Rb-Sr датирования процесса" (Макрыгина и др., 1993, стр. 487). В.А. Макрыгина и соавторы отмечают несогласованность оценок возраста эндербитов и чарнокитов и возраста двупироксеновых кристаллосланцев.

По данным Ю.В. Амелина и др. (2000), полученным классическим U-Pb изотопным методом (Krogh, 1973) по единичным зёрнам циркона дана оценка возраста эндербитов мыса Писаный камень, она составляет 617 ± 5 млн. лет (Амелин и др., 2000). Этот результат является самым достоверным из всех литературных данных по геохронологии гранулитового комплекса Кичерской зоны, поскольку получен наиболее надежным U-Pb

методом и рассчитан с наименьшей ошибкой. Для породы, из которой был выделен циркон, изучен изотопный состав Nd: $\varepsilon_{Nd}(T)$ +3.6...+3.4, который говорит о значительной примеси вещества деплетированной мантии в составе источника вещества протолита. Расчитанный модельный возраст T_{Nd} эндербитов, составляет около 0.85 млрд лет (Амелин и др., 2000).

Табли	ща 1.	1.	Изотопно-геохро	нолоческие	данные	для	гранулитов,	гнейсов	И
Доорд	овикски	их гр	оанитоидов Кичер	оской запада	Байкало-М	Іуйска	ого пояса		

№	Объект исследования	Породы	Анализиро- ванный материал	Возраст, млн лет	Изотопная система	Ссылка
1.	Гранулитовый комплекс в области распространения нюрундуканской толщи	эндербиты и чарнокиты	WR	588±50	Rb-Sr	Макрыгина и др., 1993
2.	Гранитоиды в поле развития нюрудюканской толщи	гнейсовидные плагиограниты	zirc	658-550	U-Pb	Неймарк и др., 1995
3.	Кичерский комплекс плагиомигматитов	гнейсо-граниты	zirc	815±46	U-Pb	Рыцк и др., 1999
4.	Кичерский комплекс плагиомигматитов	Плагиогнейсы и плагиогнейсо- граниты	zirc	762 ± 6	U-Pb	Рыцк и др., 2007а
5.	Маломощные жилы и прожилки в тектонической пластине нюрундуканской толще	эндербиты	zirc	617±5	U-Pb	Амелин и др., 2000
6.	Байкальский массив	эндербиты и граниты	WR, n=6	496±44	Rb-Sr	Цыганков, 2005
7.	Байкальский массив	гранитогнейсы	zirc	755±15	U-Pb	Рыцк и др., 2012a
8.	Нижнеангарский комплекс	граниты	zirc	584±8	Не указано	Рыцк и др., 2007а
9.	Нижнеангарский комплекс	граниты	zirc	581±2	U-Pb	Рыцк и др., 2012а

Отдельной проблемой является вопрос о распространённости гранулитов и, соответственно, вопрос о характере метаморфизма (региональный, локальный). Гранулитовый комплекс картируется вдоль побережья оз. Байкал полосой не менее чем в несколько километров шириной (Макрыгина и др., 1993; Конников, 1999; Цыганков, 2005), либо лишь в объеме двух выходов (в районах южной оконечности Богучанской бухты и

мыса Лударь) общей площадью не более 1 км² (Амелин и др., 2000); высказывалось мнение, что эндербиты представлены в виде единичных геологических тел (Рыцк и др., 2012). Вопрос о пространственно-площадном распространении гранулитов оставался нерешённым, в связи с чем была сформулирована одна из задач работы, решаемая с помощью геохимического, геохронологического и изотопно-геохимического исследования гранулитов, занимающих разные геологические позиции. На основании данных, которыми мы располагали к началу работ, были выбраны типичные разновидности пород, занимающих разные позиции в структуре южной части Кичерской зоны (гл. 2, 4).

1.1.2. Термобарометрические параметры формирования пород гранулитового комплекса, предшествующие исследования

Условия формирования пород гранулитового комплекса Северного Прибайкалья изучены несколькими исследователями. Для оценки температуры гранулитов А.А. Цыганковым (1996) использовались двупироксеновые термометры П. Уэллса (Wells, 1977), а также Б.Ж. Вуда и С. Банно (Wood, Banno, 1973), основанные на распределении Fe и Mg между сосуществующими орто- и клинопироксенами. Для эндербитов и чарнокитов получены значения температуры 880-910°С. Авторы отмечают, что термометр Вуда-Банно даёт значения температур на 40-50° ниже, чем термометр П. Уэллса. При использовании средних значений температур эти вариации несколько затушёвываются (Цыганков, 1996).

Оценка давления для безгранатовых ассоциаций пород, распространённых в районе Кичерской зоны, как отмечают авторы предшествующих работ (Скублов, 1994; Цыганков, 1996), представляет собой сложную задачу и носит, скорее, качественный характер. Использование амфиболо-плагиоклазового барометра (Ферштатер, 1990), данные анализа включений и давление, рассчитанное исходя из геотермического градиента, дают разброс значений от 5-6 до 10-12 кбар при среднем 7.5-9 кбар, что отвечает нижним горизонтам континентальной коры (Скублов, 1994).

Ф.Г. Рейфом (БГИ СО РАН) и А.А. Томиленко (ОИГГиМ СО РАН) термобарогеохимическими методами с помощью программ, составленных на основе известных минералогических термометров и барометров (Wells, 1977 и Mercier, 1980), исследованы первичные флюидные включения. Этими авторами установлено, что чарнокитоидные породы формировались при P=8-9 кбар и T= 800-900°C (Конников и др., 1999). Флюид имел преимущественный CO₂ состав (97.4 – 100 мол. %) при малой примеси N₂ (1.1-5.2 мол. %).

Ю.М. Лебедевой с соавторами (2016) методом TWEEQU (Berman, 1991) в программе TWQ 2.01 (Berman, 1991; Berman, 2006) с использованием дополнительных программ TWQ_Comb + TWQ_View (Доливо-Добровольский, 2003; 2013) и базы данных ba96a (Aranovich, Berman, 1996) получены относительно значимые результаты, указывающие на умеренно барический тип изученных гранулитов Богучанской бухты: наибольшее количество определений отвечает оценке 6.0–6.7 кбар и 730–890 °C. Оценки РТ метаморфизма образца высокоглиноземистого гнейса Байкальского массива гнейсогранитов, полученные двумя методами (в программе THERMOCALC (Powell, Holland, 1988) с базами ds55 и ds62, а также в программе TWQ), согласуются между собой и составляют 770 – 870 °C (\pm 90 °C) и 6.8 – 7.9 кбар (\pm 1 кбар).

Таким образом образом, геохронологические задачи, поставленные в диссертационной работе решались параллельно с получением оценок условий (Р и Т) формирования пород гранулитового комплекса, выполненные в соавторстве с П.Я. Азимовым (ИГГД РАН) (Азимов и др., 2017).

1.2. История геохронологического изучения метабазитов нюрундуканской свиты и габброидов запада Байкало-Муйского пояса

В Байкало-Муйском поясе широко распространены магматические породы, традиционно относившиеся к муйской габбро-диорит-тоналитовой серии (Салоп, 1964).

Также выделялись стратифицированные образования нюрундуканской свиты; распространены габбровые массивы, принадлежность которых к офиолитам, либо к самостоятельным интузиям является спорной.

Точка зрения о принадлежности нюрундуканской свиты к офиолитовой серии развивается, начиная с работ К.А. Клитина (1974, 1975).

Сходство нюрундуканских мафитов с метабазитами архейских зеленокаменных поясов, отражавших начало формирования океанической коры, отмечали Л.Ф.Добржинецкая (1985), В.С.Федоровский (1985), А.А. Бухаров (1985) и другие исследователи.

Принадлежность пород нюрундуканской свиты к офиолитам рассматривается в работах Н.Л. Добрецова (1983, 1991), Э.Г.Конникова и соавторов (1994а, 1999), при этом возраст океанической коры определяется как рифейский. Для амфиболитов этой свиты Sm-Nd изохронным методом было получено значение мезо-неопротерозойского (1035±92 млн лет) возраста, исходные данные не опубликованы, в дальнейшем эта датировка не подтверждена (Рыцк и др., 2007а).

Таблица 1.2. Изотопно-геохронолоческие данные для метабазитов нюрундуканской свиты и ультрамафит-мафитовых массивов западной ветви Байкало-Муйского пояса

N⁰	Объект исследования	Породы	Анализирова нный материал	Возраст, млн лет	Изотопная система	Ссылка
1.	нюрундуканская толща	толеитовые метабазальты	WR-Gr WR, n=6	1050±160 1035±92	Sm-Nd	Неймарк и др., 1991; Рыцк и др., 1999
2.	нюрундуканская толща	амфиболиты (высокотитанистые субщелочные метабазальты)	zirc	640±12- 614±12	U-Pb, TIMS	Рыцк и др., 2012a
3.	Нижнеангарский комплекс	высокотитанистое субщелочное метагаббро	zirc	620±2	U-Pb	Рыцк и др., 2012a
4.	«Акуканский» габбро- диоритовый комплекс	диориты	zirc	641±4	U-Pb	Рыцк и др., 2012б
5.	Чайский массив	габбро-нориты	Pl, Opx, CPx, WR	627±25	Sm-Nd	Amelin et al., 1997
6.	Слюдинский массив	титанистые габбро- нориты	Pl, OPx, CPx, WR	618±61	Sm-Nd	Макрыгина и др., 1993
7.	массив Тонкого мыса	высокомагнези- альные габброиды	Pl, Ol, CPx, WR	585±22	Sm-Nd	Макрыгина и др., 1993
8.	Гасан-Дякитская пластина Кичерской зоны	амфиболовые плагиогнейсы	метаморфиче ские оболочки цирконов	636±7 – 638±6	U-Pb, SHRIMP	Рыцк и др., 2017
9.	брекчированные дайки в гранитогнейсах юга Кичерской зоны	амфиболиты (субщелочное габбро)	zirc	628±3	U-Pb, SHRIMP	Андреев и др., 2018
10.	массив габброидов северной части Янской зоны	габброиды	zirc	612±5	U-Pb, LA- ICP-MS	Ванин и др., 2018

Курлинский, Нюрундуканский массивы А.А.Цыганков (2005) включил в состав офиолитового комплекса, а массивы Слюдинский, Чайский отнёс к интрузивному комплексу, сформированному на поздней стадии развития пояса.

К настоящему времени получены следующие датировки ультрамафит-мафитовых интрузий западной части Байкало-Муйского пояса (табл. 1.2):

Sm-Nd изохронным методом (плагиоклаз, ортопироксен, клинопироксен и порода в целом) определён возраст титанистых габбро-норитов Слюдинского массива, который составляет 618 ± 61 млн лет ($\varepsilon_{Nd}(T) = +8.1$, СКВО = 5.5) (Макрыгина и др., 1993).

Для пироксенит-троктолит-габбровой серии Тонкого мыса Sm-Nd изохронным методом по минералам (плагиоклаз, оливин, клинопироксен) и валовому составу породы получено определение возраста 585 ± 22 млн лет ($\epsilon_{Nd}(T) = +4.8 \pm 0.5$, CKBO = 0.21) (Макрыгина и др., 1993).

Габбро-нориты и вебстериты Чайского массива согласно среднему взвешенному четырёх Sm-Nd изохронных определений по минералам (плагиоклаз, ортопироксен, клинопироксен) и валовому составу породы имеют возраст 627 ± 25 млн лет (Amelin et al., 1997).

В пределах Гасан-Дякитской пластины Кичерской зоны широко развиты глубинные метагаббро и метагаббро-норитов, фации первично интрузивных насыщенных плагиомигматитами анатектитами (Рыцк И 2017). Оценка возраста И др., высокотемпературного регионального метаморфизма этих пород, полученная по метаморфическим оболочкам цирконов двух проб амфиболовых плагиогнейсов (SHRIMP-II, ЦИИ ВСЕГЕИ), составляет 636±7 – 638±6 млн лет. Большая часть метагабброидов Гасан-Дякитской пластины имеет высокие Sm/Nd отношения (0.19...0.22) и значения $\varepsilon_{Nd}(T) =$ +6.4...+8.3.

Были изучены брекчированные тела даек метабазитов, локализованные в гранитогнейсах Байкальского массива Кичерской зоны Байкало-Муйского пояса (Андреев и др., 2018). Для U-Pb геохронологических исследований из амфиболитов, отвечающих по своему составу субщелочному габбро, выделен циркон, полученная оценка возраста по которому составляет 628 ± 3 млн лет (СКВО = 0.068). Это время интерпретируется авторами тезисов как возраст позднебайкальского высокотемпературного метаморфизма пород Байкальского массива. Величины Nd модельных возрастов T_{Nd} этих пород находятся в интервале 2677–2055 млн лет.

Выполнен U-Pb изотопный анализ цирконов габброидов северной части Янской зоны северной части Байкало-Муйского пояса методом лазерной абляции (Ванин и др., 2018). По 30 зёрнам циркона рассчитан конкордантный возраст 612±5 млн лет.

При достаточно хорошей изученности мафитовых пород запада Байкало-Муйского пояса оставался вопрос принадлежности пироксенит-троктолит-габбрового массива

Тонкий мыс Кичерской зоны к тому или иному комплексу (офиолитовому или сформированному на более поздней стадии развития складчатого пояса).

1.3. История геохронологического изучения гранитоидов Кичерской зоны

Выявление и датирование гранитоидов, маркирующих этап завершения тектонической активности в регионе, необходимо для решения вопросов тектонического районирования и восстановления истории геологического развития подвижного пояса. Данные об объёме, составе и возрасте таких гранитов оказались противоречивы.

В Байкало-Муйском поясе традиционно выделялась муйская габбро-диоритплагиогранитная серия (Салоп, 1964). Геохронологические исследования U-Pb методом по циркону (Конников, 1992; Рыцк и др., 2007, 2012) показали, что гранитоиды, ранее объединявшиеся в составе габбро-диорит-тоналитовой серии имеют различный возраст (812±19 млн лет для гранитоидов муйского комплекса Анамакит-Муйской зоны и возраст гальки двуполевошпатовых гранитов Лесного массива 556 ± 16 млн лет).

В Байкало-Муйском поясе (Конников и др., 1991; 1994а; Цыганков, 2005) описаны офиолитовые комплексы. В офиолитовых комплексах и в породах современной океанической коры лейкократовые породы являются конечным продуктом дифференциации основной магмы или частичного плавления основных пород. (Колман, 1979; Силантьев и др., 2014; Furnes, Dilek, 2017). Лейкократовые породы приурочены лишь к самому офиолитовому комплексу и не внедрялись в автохтонные породы, с которыми контактируют офиолиты. Во многих офиолитовых комплексах и в породах океанической коры лейкократовые дериваты прорывают кумулятивные габбро, в ряде случаев они образуют небольшие интрузивные штоки или отдельные дайки внутри диабазовых параллельных даек.

Вместе с тем известны случаи внедрения интрузий лейкократовых пород после становления офиолитовых комплексов. В этих ситуациях возможно образование адакитов – гранитоидов с определёнными геохимическими характеристиками (высокоглинозёмистые, натровые породы с высоким содержанием Sr и низкими концентрациями Y и тяжёлых лантаноидов). Их происхождение связывают с частичным плавлением мафического субстрата, при котором гранат и (или) роговая обманка являются реститовыми фазами (Drummond et al., 1996; Туркина, 2002; Лучицкая, 2002; Condie, 2005; Martin et al., 2005; Ефремов, 2010).

Таким образом, возникает задача: вычленить наиболее более поздние гранитоиды Na серии, отличить их от относящихся к офиолитам.

Для района исследования опубликованы данные о возрасте гранитов (табл. 1.1), распространённых в районе окрестностей пос. Нижнеангарск, 584 ± 8 млн лет (Рыцк и др., 2007), 581 ± 2 млн лет (Рыцк и др., 2012а), однако описание тел не приводится, что не позволяет интерпретировать полученные результаты авторов.

Еще одной задачей исследования было изучение пород массива, не относившегося предшественниками к гранулитовому комплексу, а интрудирующего его (рис. 1.2). По данным (Макрыгина и др., 1993; Цыганков, 1996; Рыцк и др., 2013) массив расположен в районе левобережья реки Рель вблизи ее устья (окрестности с. Байкальское), и рассматривается как крупное интрузивное тело, развитое среди гранулитов и габброидов. Попытка определения возраста, выполненная А.А.Цыганковым (2005) Rb-Sr методом по 6 пробам эндербитов и гранитов «Байкальского массива» (рис. 1.2) дали оценку возраста 496 ± 44 млн лет. При рассмотрении этих результатов (СКВО > 100) можно заключить, что они не отражают возраст кристаллизации пород.

В работе (Рыцк и др., 2013) приведены результаты U-Pb изотопного исследования циркона из Байкальского массива по трём размерным фракциям. Среднее значение возраста циркона из гнейсогранитов, рассчитанное по 207 Pb/ 206 Pb составило 755 ± 15 млн лет. Авторы рассматривают этот результат как возраст кристаллизации протолитов гнейсо-гранитов Байкальского массива, однако верхнее пересечение полученной дискордиий по трём точкам с конкордией, 778±29 млн лет представляется не менее достоверным возрастом. Модельные двухстадийные Nd возрасты 2.2–1.8 млрд лет при отрицательных значениях величин $\varepsilon_{Nd}(T)$ –9.8...–4.0, указывают на формирование исходных расплавов протолитов гнейсо-гранитов в ходе переработки раннепротерозойской континентальной коры, возможно, с небольшой добавкой позднепротерозойского ювенильного материала (Рыцк и др., 2013).

Однако, в ходе наших полевых работ возникло предположение о том, что породы "массива" неотличимы от гранулитов. Поэтому для исследования выбраны образцы из разных частей массива в районе с. Байкальское. (табл. 3.1 и рис. 3.1).

Для решения вопросов тектонического районирования и восстановления истории геологического развития подвижного пояса поставлена задача выявления и датирования гранитоидов, маркирующих этап завершения тектонической активности в регионе. Данные об объёме, составе и возрасте таких гранитов оказались противоречивы.

Рис. 1.2. Схема геологического строения Слюдинского участка (Макрыгина и др., 1993). 1– включения дунитов и аподунитовых серпентинитов в титанистых габброноритах; 2 – габброиды магнезиального типа; 3 – габбронориты титанистого типа; 4 – плагиомигматитамфиболитовый комплекс нюрундуканской свиты; 5 – гранулит-чарнокитовый комплекс; 6 – автохтонные гранитоиды «Байкальского массива»; 7 – разрывные нарушения; 8 – надвиги: I – Слюдинский; II –Лударский.

Все приведённые в главе данные показывают, что стоит задача связать имеющийся «массив» геологических данных с геохронологической и изотопно-геохимической информацией, полученной автором, совместно с накопленными результатами изучения различных изотопных систем для пород междуречья Слюдянка-Рель южной части Кичерской зоны.

Глава 2. Геологическое строение междуречья Слюдянка–Рель

Объектом исследования является комплекс метаморфических пород гранулитовой фации и распространённые совместно с ними гранитоиды района губы Балтаханова, Лударской губы и окрестностей с. Байкальское (северо-западное побережье Байкала), а также ультрамафит-мафитовые плутоны чая-нюрундуканского комплекса. Этот район представляет собой часть Кичерской (нюрундуканской) зоны западного сегмента Байкало-Муйского вулкано-плутонического пояса.

На рис. 1.1 видно, что палеозойские гранитоиды, слагающие Баргузинский и Северо-Муйский хребты, разделяют пояс на два крупных сегмента _ западный (Северобайкальский) и восточный (Муйский), имеющих северо-восточное и север-северозападное простирание соответственно (Конников и др., 1999). Северобайкальский сегмент наиболее протяжённый (360 км) и наиболее сложный по своему внутреннему строению. Кичерская зона расположена в юго-западной части Северобайкальского сегмента Байкало-Муйского пояса (рис. 1.1 и 2.1).

В Кичерской зоне развиты амфиболиты, мигматиты, гранулиты, а также различного состава метавулканиты, первоначально выделенные в нюрундуканскую свиту раннего протерозоя (Салоп, 1964), которые в междуречье р. Холодной и верховьях р. Мама несогласно перекрываются поздненеопротерозой-нижнекембрийским терригеннокарбонатным комплексом (Булгатов, 1983). Состав пород, объединённых В нюрундуканскую свиту, крайне разнороден и, как показали исследования в Северном Прибайкалье, эта разнородность определяется её сложным покровно-складчатым строением (Макрыгина и др., 1989).

В районе исследования (в южной части Кичерской зоны) выделялись три блока: Слюдинский, Центральный и Байкальский (Конников и др., 1999) (рис. 2.1). Слюдинский блок охватывает одноимённый хребет, значительную часть которого занимает массив, сложенный габброидами магнезиального и титанистого типов. Центральный блок отделён от Слюдинского разломом, он рассматривался как область наиболее широкого распространения гранулитов, двупироксеновых и пироксеновых кристаллосланцев, эндербитов, чарнокитоидов и лейкократовых гиперстенсодержащих гранитов. В Байкальском блоке преимущественно развиты мигматиты и мигматизированные амфиболиты, образующие синформу, ось которой вытянута в северо-восточном направлении.

Рис. 2.1. Схема геологического строения междуречья Слюдянка – Рель.

Составлена с использованием материалов: В.П. Сафронов, А.И. Трепалин, В.Ф. Смолькин Геологическая карта междуречья Тошка - Рель (СЗ побережье оз. Байкал) 1969 г. Приложение №8 к отчету Нижне-Ангарской партии за 1967-68 гг.; Добржинецкая Л.Ф. Деформации магматических пород в условиях глубинного тектогенеза. М.: Наука. 1989. 288 с.

Этот и другие рис. в главе 2 составлены А.А. Разумовским и опубликованы в (Федотова и др., 2014)

1 – четвертичные отложения нерасчленённые; 2–11 – неопротерозойские образования Байкало-Муйского пояса: 2 – метаморфические образования Олокитской зоны; 3 – милониты Мамско-Нюрундуканского разлома; 4 – основные двупироксеновые гранулиты и амфиболиты по ним; 5 – эндербиты, чарнокиты и гнейсы по ним; 6 – габбро, габбронориты, оливиновое габбро, троктолиты; 7 – габбро, амфиболовые габбро; 8 – перидотиты, пироксениты; 9 – мигматизированные амфиболиты и ассоциирующие гранитоиды; 10 – тела тоналит-плагиогранит-лейкогранитового комплекса; 11 – тела тоналит-плагиогранит-лейкогранитового комплекса вне масштаба; 12 – наложенная амфиболитизация; 13 – надвиги: а – достоверные, б – предполагаемые; 14 – прочие разрывные нарушения: а – достоверные, б – предполагаемые; 15 – геологические границы: а – достоверные, б – предполагаемые; 16 – места отбора и номера проб: а –, б –, в - .

Таблица 2.1. Общий список проб пород богучанского комплекса и пород гипабиссального комплекса Кичерской зоны, изученных изотопно-геохимическими методами (результаты приведены в Таблице 3 (Приложение)). Координаты приведены в системе Пулково 1942.

N	Номер	Коорд	цинаты	Комплекс	Точка на рис. 2 в	
JN⊆	образца	с.ш.	В.Д.	(подкомпл.)	автореферате	
1	SB0712B	55°25.825'	109°10.838'	1	5	
2	2821	55°24.865'	109°12.609'	1	7	
3	2951	55°24.90'	109°12.61'	1	8	
4	SB094Б	55°24.867'	109°12.598'	1	9	
5	2904	55°24.61'	109°12.51'	1	10	
6	2905-4	55°24.74'	109°12.63'	1	11	
7	2906	55°23.719'	109°13.387'	1	12	
8	2816	55°23.218'	109°12.992'	1	13	
9	2914	55°22.933'	109°11.177'	2	16	
10	SB0916Б	55°24.262'	109°09.606'	2	17	
11	2883-1	55°22.811'	109°04.394'	2	18	
12	2883-11	55°22.811'	109°04.394'	2	19	
13	AB-2	55°22.813'	109°04.362'	2	20	
14	SB072P16	55°27.018'	109°12.078'	3	1	
15	SB072P17	55°27.018'	109°12.078'	3	2	
16	SB071P4	55°27.028'	109°11.418'	3	3	
17	SB0710A	55°26.363'	109°10.594'	3	4	
18	SB0712Γ	55°25.825'	109°10.838'	3	6	
19	SB098Д	55°22.156'	109°13.090'	3	14	
20	AB-28	55°21.519'	109°12.519'	4	15	

Точки отбора и номера отбора проб:

1 – чарнокитоидов богучанского комплекса (5, 7 – 13);

2 – эндербито-гнейсов богучанского комплекса (16 – 20);

3 – тоналитов-плагиогранитов-лейкогранитов гипабиссального комплекса (1 – 4, 6, 14);

4 – гнейсовидных гранитоидов мыса Лударь (15).

Изучены также отобранные в коренных выходах в руч.Туркин (рис. 1 в автореферате) гнейсовидные лейкограниты обр. 2962 (55°44.32' с.ш. 109°29.31' в.д.) и лейкограниты обр. 2963 (55°44.54' с.ш. 109°28.92' в.д.), отнесённые к гипабиссальному комплексу (Сомсикова и др., 2021).

2.1 Гранулитовый комплекс Кичерской зоны

В береговых обнажениях мысов, разделяющих бухты Богучанская, губа Балтаханова и Лударская, в выходах на прилегающих возвышенностях и в долине реки Рель, включая окрестности расположенного в ее устье села Байкальское (см. рис. 2.1 Б, В) распространены кристаллические сланцы (двупироксеновые, биотит-пироксеновые породы основного состава), амфиболиты и эндербиты (пироксен-плагиоклазовые породы), чарнокиты (пироксен-двуполевошпатовые породы с антипертитовыми сростками), и продукты их регрессивного преобразования (биотитовые и амфибол-биотитовые сланцы и гнейсы). Амфиболиты и кристаллическиесланцы с реликтами гранулитов, найденных в восточных отрогах северной части Байкальского хребта в окрестностях оз. Слюдянское (Конников и др., 1999) относятся к тому же комплексу.

2.1.1. Кристаллические сланцы, эндербиты и чарнокиты

Высокометаморфизованные деформированы породы в сжатые склалки преимущественно с северо-западным и северным простиранием осей (см. рис. 2.1. Б, В). Замки складок отчетливо видны в обнажениях северо-западной экспозиции, в частности, в прибрежных выходах восточной оконечности Богучанской бухты (мыс Писаный Камень, название мыса приведено по (Bukharov et al., 1990)) и в северной части мыса Лударь. В верхней части южного – юго-восточного склона горы с в.о. 806 м (севернее с. Байкальское, см. рис. 2.1. В) замки складок, образованные эндербито-гнейсами, определяют присутствие на нем небольших вытянутых гряд. Гипсометрически ниже крылья складок, сложенные этими же породами, бронируют склоны, образуя крупные выходы. Поля распространения кристаллических сланцев, более подверженных выветриванию, приурочены на таких склонах к незначительным понижениям в рельефе, существенно менее обнажённым, чем области развития эндербитов, чарнокитов и гнейсов (Федотова и др., 2014). Лейкократовые породы слагают возвышенность и, вероятно, этим объясняется мнение о присутствии крупного Байкальского гранитного массива в левом борту долины реки Рель, близи ее устья (Макрыгина и др., 1993; Конников и др., 1999; Цыганков и др., 2000; Цыганков, 2005; Рыцк и др., 2013).

Таким образом, основные гранулиты и чарнокитоиды, включающие породы среднего и кислого состава нормальной щелочности (табл. 1 в Приложении) распространены, по крайней мере, от бассейна нижнего течения р. Рель на юге до Богучанской бухты на севере (рис. 2.1. Б, В), то есть полученные данные дают возможность утвердительно ответить на вопрос, распространён ли гранулитовый комплекс за пределами двух небольших участков, показанных на схеме строения территории (Амелин и др., 2000).

Для исследований гранулитового комплекса Кичерской зоны выбраны представительные образцы чарнокитоидов SB094E, 2816, 2821, 2904, 2905-4, 2951, апогранулитовых гнейсов 2906, SB0712B, SB0918B, SB0920A и эндербито-гнейсов 2883-1, 2883-11, 2914, AB2 и SB0916E (рис. 2.1; табл. 2.1). Более подробное описание приводится в гл. 4.

2.1.2. Амфиболитизированные габброиды и ортоамфиболиты

Слагает небольшой хребет с в.о. 561.3, простирающийся от северо-западного побережья Богучанской бухты к северному берегу озера Богучан (рис. 2.1. Б). Комплекс, согласно нашим данным, приведённым в работе (Федотова и др., 2014), состоит преимущественно из амфибол-полевошпатовых пород, в различной степени сохранивших признаки первичной габбровой структуры. Отсутствуют биотит-содержащие разновидности, широко развитые на остальной площади распространения метаморфического комплекса. Слагающие скальные обнажения амфиболитизированные габброиды – среднезернистые, реже крупноили мелкозернистые породы, обычно однородные, в ряде случаев отмечается метаморфическая полосчатость. Для пород характерна неравномерная пятнистая окраска – от буро-жёлтой, на выветрелой поверхности однородных фрагментов, до серо-зеленой вдоль системы трещин. В габброидах отмечены меланократовые жилы основных мелкосреднезернистых пород. Амфиболитизация затушевывает первичные соотношения, но можно видеть, что мощности таких жил составляют 3-15 см, у более мощных жил наблюдаются мелкие ответвления. В центральной и южной части рассматриваемого хребта (рис. 2.1. Б) распространены гнейсы и ортоамфиболиты – зеленовато-серые амфиболплагиоклазовые породы, в которых метаморфические структуры выражены более явно, чем магматические. Объём гнейсов, залегающих конформно метаморфической полосчатости (рис. 2.6. А) в виде тел мощностью до 4 м, в разрезе достигает 20-25%.

В южной части линии береговых обрывов, в монотонных пачках ортоамфиболитов, обычно в наиболее компетентных рельефообразующих частях обнажений, хорошо проявляется скорлуповатая и шаровая отдельность. Разброс размеров шаровых блоков

составляет от 3-4 до 20-25 см. Наименее изменённые породы, в центральных зонах шаровой отдельности, сложены гранулитами (практически неизменёнными кварцсодержащими двупироксен-плагиоклазовыми породами).

Амфиболитизированные габброиды и ортоамфиболиты с прослоями гнейсов испытали совместные деформации. Породы смяты в асимметричные линейные складки амплитудой около 10 м, преобладает крутое (50-65°) падение метаморфической полосчатости в северовосточных румбах, что указывает на единый структурный план деформаций для всей области развития метаморфического комплекса, включая описываемое – западное побережье Богучанской бухты (рис. 2.1. Б, В) (Razumovsky et al., 2008).

2.2. Пироксенит-троктолит-габбровый комплекс массива Тонкий мыс

В строении расслоенного комплекса Тонкого мыса условно выделяется два типа разреза: существенно габбровый тип (рис. 2.2) и чередование перидотитов, пироксенитов, троктолитов и габбро (рис. 2.3). Массив наиболее полно обнажён в невысоких, но практически непрерывных скальных выходах вдоль южного берега мыса (рис. 2.4).

Крупно- гигантокристаллические плагиоверлиты образуют слои мощностью 2-15 м (см. рис. 2.4) и, как правило, чередуются с клинопироксенитами и вебстеритами. Вебстериты и клинопироксениты, преимущественно гигантозернистые породы (размер зерен от 1.5 до 4 см) образуют слои мощностью от 5-7 до 15-70 см в случае тонкополосчатого, и от 1 до 10 м в случае грубополосчатого чередования пород (см. рис. 2.4). Клинопироксениты преобладают, количество вебстеритов не превышает 20%. Вебстериты обычно слагают отдельные полосы и линзовидные обособления в клинопироксенитах мощностью от первых десятков сантиметров до 2-4 м (Razumovsky et al., 2008; Федотова и др., 2014).

Габброиды ассоциирующие с перидотитами и пироксенитами, – это обычно средне- и крупнозернистые, реже гигантозернистые породы. Из оливин-содержащих пород резко преобладают троктолиты – крупнозернистые породы, оливин частично замещен амфиболом и/или серпентинизирован, плагиоклаз, в большинстве случаев, образует крупные (от 0.3 до 1.5 см) идиоморфные кристаллы. Мощности прослоев троктолитов составляют 2-15 м. Габбро и оливиновые габбро участвуют в переслаивании с пироксенитами. Мощности габбровых прослоев колеблются от 2-3 до 15-20 см в случае тонкополосчатого, и от 0.5 до 10-11 м в случае грубополосчатого чередования пород (рис. 2.4).

Рис. 2.2. Схема геологического строения мыса Тонкий, составлена А.А. Разумовским.

(Федотова и др., 2014)

1-3 – площади, на которых преимущественно развиты коренные породы: 1 – амфиболовое габбро, 2 – габбро, габбронориты, троктолиты и оливиновое габбро, 3 – перидотиты, пироксениты; 4 – жильные тела: плагиограниты, тоналиты, фельзиты (вне масштаба); 5 – жилы и дайки меланогаббро (вне масштаба); 6 – разрывные нарушения предполагаемые, 7 – элементы залегания: a – первичной минеральной полосчатости (магматической), 6 – метаморфической полосчатости, e – контактов геологических тел, минеральной уплощенности (сланцеватости).

Габбровый тип разреза в составе расслоенного комплекса Тонкого мыса образован крупно-гигантозернистыми габбро и оливиновыми габбро (рис. 2.3). Кроме того, существенную роль в строении габброидного типа разреза играют амфиболовые габбро (магматическая роговая обманка от 10 до 60%), которые часто содержат линзы "габбропегматитов" с кристаллами роговой обманки длиной до 15 см. Протяженность линз "габбропегматитов" до первых метров при мощности 30-70 см. С перидотит-пироксенитгаббровым типом разреза амфиболовые габбро, по-видимому, имеют интрузивные секущие соотношения. В габброидном типе разреза устанавливаются постепенные переходы от габбро и оливиновых габбро (в том числе в виде кокардовых габбро) к амфиболовым габбро. Мощности зон перехода обычно составляют 1-2 м.

пироксенит-троктолит-габбрового В породах комплекса проявлены структуры магматической расслоенности, формирование которых сопровождалось вязкопластическим перераспределением вещества. В целом для описываемого комплекса устанавливается ранний этап вязко-пластических деформаций, в результате которого слагающие его породы были смяты в открытые пологие линейные складки. Данный этап устанавливается по наличию первичной минеральной полосчатости, которая и определяет расслоенный характер всего комплекса. При этом структуры минеральной линейности и уплощенности конформны падениям крыльев складок минеральной полосчатости, что указывает на их принадлежность к одному этапу деформаций. В настоящий момент зеркало складчатости круто падает в западных-северо-западных румбах (рис. 2.2).

Рис. 2.3. Геологический профиль SB071P от т.н. SB071 до SB0714, составлен А.А. Разумовским.

1 – четвертичные делювиальные образования; 2, 3 – плагиограниты, реже плагиолейкограниты, тоналиты: 2 – в масштабе профиля, 3 – вне масштаба; 4 – жилы и дайки меланогаббро; 5 – амфиболовоегаббро, 6 – габбро и габбронориты, 7 – троктолиты и оливиновое габбро, 8 – амфиболитизированные габбро; 9 – перидотиты; 10 – пироксениты; 11 – зоны брекчирования; 12 – зоны развития метаморфической сланцеватости; 13 – геологические границы достоверные: a – резкие, б – постепенные; 14 – элементы залегания: a – первичной (магматической) минеральной полосчатости, б – метаморфической полосчатости; 15 – элементы залегания контактов геологических тел, минеральной уплощенности (сланцеватости), 16 – номера и места отбора проб на хим. анализ.

Для пироксенит-троктолит-габбрового комплекса Тонкого мыса характерны как фрагменты с интенсивно развитой магматической расслоенностью, с мощностью слоев от 2-3 до 40-70 см, так чередование слоев мощностью от одного до первых десятков метров, сложенных массивными или шлирово-полосчатыми породами (Razumovsky et al., 2008). При этом тонкая магматическая (минеральная) полосчатость, в большинстве случаев, обусловлена изменениями количественного состава породообразующих минералов. Грубополосчатое чередование пород может осложняться дифференциацией по зернистости. На значительной части изученной площади отмечаются более поздние метаморфические линейно-плоскостные структуры (см. рис. 2.2), наложенные на породы со сформированной минеральной полосчатостью раннего этапа деформаций.

Породы расслоенного комплекса изменены, преобразования проявлены неравномерно. Перидотиты в существенной степени серпентинизированы, пироксены замещены амфиболом. Клинопироксениты частично превращены в серпентин-амфиболовые сланцы. Крупно- и гигантозернистые габброиды имеют характерную кокардовую структуру, при которой каймы кристаллов пироксена замещаются тонко-лучистым амфиболом, основной плагиоклаз соссюритизируется. Магматическая роговая обманка, в большинстве случаев, замещается зеленым низкотемпературным амфиболом.

Контакты массива не обнажены, изменений размерности или состава вблизи границ поля выхода пироксенит-троктолит-габбрового комплекса района мыса Тонкий не отмечается, поэтому, скорее всего, данный комплекс относится к более крупному массиву, либо ограничен тектоническими контактами.

Рис. 2.4. Геологический профиль SB072P от т.н. SB0716 до SB072, составлен А.А. Разумовским. Условные обозначения см. на рис. 2.3.

Наименее изменённые образцы троктолитов массива Тонкий Мыс SB071A, SB072P9, SB071P20A, SB071P15A, SB076Г, SB072P11 выбраны для геохимических и изотопногеохимических исследований (табл. 2.1). Более подробное описание приводится в гл. 5.

2.3. Тоналит-плагиогранит-гранитная серия

Комплекс тоналитов-плагиогранитов-лейкогранитов серией представлен гипабиссальных, преимущественно дайковых дел, секущих породы пироксенит-троктолитгаббрового массива Тонкий мыс, амфиболитизированные габброиды, чередующиеся кристаллические сланцы и гнейсы (см. рис. 2.1). Выделение комплекса тоналитовплагтогранитов-лейкогранитов как самостоятельного обосновано нашими данными, приведёнными в работах (Федотова и др., 2014; Сомсикова и др., 2021). В составе комплекса плагиограниты, отмечаются плагиолейкограниты и лейкограниты, преобладают отличающиеся крайне малыми количествами биотита. Тоналиты (обр. SB072P17) образуют маломощные зоны в составе сложнопостроенных тел (рис. 2.5). Породами комплекса гранитоидов сложены как жилы (5-50 см), так и тела мощностью до 16-18 м. Тела плагиогранитов часто осложнены развитыми в них структурами внутреннего течения и апофизами (см. рис. 2.5). Тела плагиогранитов, внедряющиеся в троктолиты и габбро расслоенного комплекса Тонкого мыса, пространственно связаны с зонами превращения габброидов в полностью амфиболитизированные породы. На минеральную полосчатость раннего этапа деформаций накладываются новообразованные плоскостные структуры, которые были последними, происходившими при температуре, достаточной для возникновения пронизывающих породы расслоенного комплекса деформационнометаморфических структур (Razumovskiy et al., 2008). Внедрение плагиогранитных тел, как правило, происходит в зонах контакта пород разной компетентности на крыльях складок полосчатости расслоенного комплекса. Следует отметить, что зоны полностью амфиболитизированных габбро, мощностью в десятки метров, отмечаются и вне связи с обнажающимися телами гранитоидов.

Рис. 2.5. Соотношение между субвулканическим телом (лакколитом) тоналитов и троктолитами. Желтый ромб на фото и на рис. – точка отбора пробы SB072P17 для изотопно-геохимических и геохронологических исследований. Фото и схема А.А. Разумовского.

Структуры течения, отмеченные в обнажениях, обнаруживаются и на микроуровне. Так, тоналиты обр. SB72P17, представляют собой среднекристаллическую породу, состоящую из зёрен соссюритизированного плагиоклаза и кварца, чешуек хлоритизированного таблитчатого погружённых в мелкокристаллическую биотита, амфибола, массу аллотриоморфнозернистого кварца, имеющую струйчатое строение. Замещение проявлено избирательно: в центральных частях более плагиоклаза выражена соссюритизация, что связано, видимо, с первичной зональностью плагиоклаза. Биотит практически полностью хлоритизирован. Акцессорные минералы – апатит, циркон.

В северо-западной части Богучанской губы комплекс амфиболитизированных габбро рассечён сетью гранитоидных жил и прожилков, образование которых, по-видимому, происходило в условиях хрупких сколовых деформаций, наиболее мелкие (менее 1-1.5 см) жилки имеют лейкогранитный состав. Строение более мощных тел (0.3-0.6 м) может быть
осложнено наличием многочисленных жильных отщепов и апофиз. Преобладающие плагиогранитные тела, мощностью 5-40 см, имеют массивную структуру и отчётливо секут как границы между чередующимися гнейсами и амфиболитизированными габбро, так и гнейсовидность и метаморфическую полосчатость этих пород.

Рис. 2.6. Соотношение между дайкой биотитового гранита и вмещающими гранулитами (SB0712B) и амфиболитами (SB0712A).

Жёлтый ромб на фото и на рис. – точка тобора пробы гранита SB0712Г для изотопногеохимических и геохронологических исследований. Фото и схема А.А. Разумовского.

Плагиограниты дайки, секущей амфиболиты западной части Богучанской бухты (обр. SB0712Г, рис. 2.6) – породы, состоящие из заключённых в микрогранитную основную массу крупных зерен полевого шпата и удлинённо-призматических и игольчатых кристаллов амфибола, частично, реже полностью замещённого эпидотом. Во внешних зонах полевых шпатов в некоторых случаях встречаются микропегматитовые вростки кварца.

Жилы плагиогранитов-лейкогранитов, секущие габброиды Слюдинского массива, отличаются как широким развитием пегматоидных разновидностей, в том числе мусковитовых пегматитов, так и гранат-содержащих гранитов. В пределах Слюдинского массива отмечены и редкие маломощные (первые метры) тела гранат-амфиболовых тоналитов-плагиогранитов-лейкогранитов, кристаллических Жилы сланцев. интрудирующие породы Слюдинского массива, приурочены к локальным зонам деформаций смятия и течения. В пределах таких зон, в амфиболитизированных габбро отмечаются отдельные необласты плагиоклаза и их скопления, иногда контакт между телами габброидов и гранитоидов приобретает диффузный характер. Системы прожилков кварц-полевошпатового состава без чётких контактов неравномерно пронизывают вмещающие породы, а не выполняют трещины отрыва. Зоны контакта между амфиболитизированными габброидами И гранитами бывают осложнены малоамплитудными складками течения и нагнетания (Razumovskiy et al., 2008).

Таким образом, для жил гранитоидов, отмеченных в Слюдинском массиве, проявлены их совместные деформации с вмещающими породами. Вероятно, это объясняется несколько более глубинной обстановкой кристаллизации гранитоидов.

Приведённые данные показывают, что комплекс тоналитов-плагиогранитовлейкогранитов не является элементом магматической серии габброидных массивов; напротив, этот комплекс запечатывает структуру, образованную в результате совмещения гранулит-эндербит-чарнокитового комплекса, ортоамфиболитов и связанных с ними габброидов, пород Слюдинского массива и мыса Тонкий.

Своеобразные магматические брекчии, выделяющиеся по строению на фоне остальных пород рассматриваемой территории, обнажены в береговых обрывах мыса Лударь. Матрикс брекчий представлен плагиогнейсами. В виде многочисленных обломков, от остроугольных до деформированных согласно с гнейсовидностью вмещающих пород, в плагиогнейсах находятся крупнозернистые габброиды и меланократовые амфиболовые кристаллические сланцы. По простиранию с ЮЗ на ССВ зона чередования магматических брекчий и гнейсов переходит в чередование амфиболитов и гнейсов. Породы береговой части мыса Лударь предварительно включены в состав единого метаморфического комплекса (см. рис. 2.1 В), но возможно и их соответствие комплексу тоналитов-плагиогранитов-лейкогранитов. С.Г. Скубловым (1994) здесь выделена метабазит-плагиогранит-мигматитовая ассоциация, характеризующаяся преобладанием гранитоидов и мигматитов.

38

Для изотопно-геохимического исследования выбраны 11 образцов гранитоидов: тоналиты SB072P17 и лейкограниты SB072P16 из грибообразного тела (рис. 2.5), и лейкограниты SB071P4 из дайки (рис. 2.3), тоналиты 2810 и SB0715A массива Тонкий Мыс, плагиограниты SB0712Г из дайки, секущей ортоамфиболиты и габброиды западной части Богучанской бухты; биотитовые граниты SB098Д и AB28 из чередования с амфиболитами отобраны с южной оконечности мыса Лударь; граниты 2962 и 2963 из жил, секущих амфиболиты у ручья Туркин, жилы гранитов 2965 секут амфиболиты Курлинского массива. Более подробное описание приводится в гл. 6.

Глава 3. Материалы и методы исследования

3.1. Полевые методы отбора проб и пробоподготовка

В ходе производственной практики в июле-августе 2009 г. проводились полевые работы в составе экспедиционного отряда №49 Геологического института РАН (начальник отряда Федотова А.А.). В районе практики проводились маршрутные исследования, в ходе которых шло изучение габбро-гранитоидов левого борта долины р. Рель (рис. 2.1), пород Байкальского массива в районе м. Красный Яр – с. Байкальское, Байкальского массива в окрестностях с. Байкальское (южного склона горы с во 806.0), береговых обнажений губы Балтаханова, береговых отложений м. Красный Яр, пород южной части м. Лударь (вблизи с. Байкальское), м. Писаный Камень и пород Богучанской бухты. Было выяснены и задокументированы соотношения между комплексами пород. Проходило полевое исследование, выбор и отбор образцов представительных типов пород из коренных выходов для геохимического и изотопно-геохронологического анализа. Для химического анализа образцы дробились до размера примерно 3×4 см и отбирались, по-возможности, самые неизменённые, невыветрелые кусочки в небольшие мешки. Вес такой пробы составлял около 0.5 кг. Также отбирался материал для шлифов, проводилось их макроскопическое описание. Подготовка материала для анализа включала дробление, квартование и истирание образцов вручную в стальной ступе.

В августе 2012 г. проводились полевые работы в составе экспедиционного отряда №49 Геологического института РАН (начальник отряда Федотова А.А.). В это время проходило пополнение недостающих образцов пород ранее исследованной территории предыдущих полевых работ 2009 года, а также исследование габброидов, амфиболитов и гранитоидов Слюдинского и Курлинского массивов, коренных выходов пород вдоль ручья Туркин. Выбор, отбор образцов для дальнейших исследований и пробоподготовка проходила по такой схеме, как и в период проведения полевых работ 2009 года.

Кроме самостоятельно отобранных, использована коллекция образцов А.А. Федотовой, А.А. Разумовского и Е.В. Хаина, собранная в течении двух совместных и предыдущих экспедиционных работ. Места отбора проб для геохимических, изотопно-геохимических и геохронологических исследований отмечены на схеме изучаемого региона (рис. 2.1).

Ниже приведена таблица 3.1 со списком отобранных проб для геохронологического исследования U-Pb методом по циркону и формулировкой поставленных задач.

3.2. Определение состава породообразующих оксидов и содержаний элементовпримесей в породах

Анализ пород на главные компоненты выполнен на рентгенофлюоресцентном спектрометре AXIOS Advanced в центральной лаборатории анализа вещества в секторе рентгеноспектральных методов анализа ГЕОХИ РАН и на рентгенфлуоресцентном спектрометре S4 Pioner в лаборатории химико-аналитических исследований ГИН РАН.

Для этого исходная проба высушивалась в сушильном шкафу при температуре 105°С до постоянного веса, затем растиралась в ступке до крупности зерна 200 меш (74 мкм). Навеска пробы весом 300 мг смешивалась с 60 мг полистирола (5:1), порошок засыпался в прессформу диаметром 22 мм и с помощью пресса принимал форму таблетки при давлении 70 кг/см². При температуре 950°С из отдельной навески определялись потери при прокаливании (ппп).

Определение редких и редкоземельных элементов пород проводилось методом ICP-MS в отделе научно-производственных аналитических работ Института минералогии, геохимии и кристаллохимии редких элементов (ФГУП "ИМГРЭ"), подготовка проб к анализу проведена методом сплавления и микроволнового разложения.

3.3. Изотопно-геохимические методы исследования. Изучение Rb-Sr и Sm-Nd изотопных систем горных пород

Как отмечено в разделе 3.1., Rb-Sr и Sm-Nd изотопные исследования проводились автором в лаборатории изотопной геохимии и геохронологии ГЕОХИ РАН. Для исследования Rb-Sr и Sm-Nd изотопных систем пород выбраны в том числе образцы эндербито-гнейсов, чарнокитодов и гранитоидов, в которых изучалась U-Pb изотопная система цирконов, рассматриваемые в разделах 4.5 и 6.3.

Для анализа использовали навески около 0.03 г образца в виде тонко истертой пудры. Разложение проб проводили в герметично закрытых фторопластовых виалах в смеси плавиковой и азотной кислот (5:1 соответственно) на шейкере под лампами накаливания в течение трех суток. После выпаривания к сухому остатку трижды добавляли по 1 мл концентрированной соляной кислоты с последующим выпариванием. Таким образом вещество переводится в легкорастворимое хлоридное состояние и удаляется неразложившийся остаток. На первом этапе на фторопластовых колонках с ионнообменной смолой *DowexW* 50×8 выделяли Rb, Sr и фракции редкоземельных элементов (РЗЭ). Выделение проводили методом ступенчатого элюирования 2.2 N HCl (для Rb и Sr) и 4.0 N HCl (для Sm и Nd). Фракция РЗЭ подвергалась дополнительному разделению. Sm и Nd

41

извлекали на полиэтиленовых колонках с ионнообменной смолой *Ln-spec* ступенчатым элюированием 0.15 N HCl, 0.3 N HCl и 0.7 N HCl.

Для определения концентрации и изотопного состава элемента в образце применялся метод изотопного разбавления, используемый в лаборатории (Костицын, Журавлёв, 1987). Он заключается в определении изотопного состава смеси известного количества индикатора (трасера) и неизвестного количества определяемого элемента. Трасер представляет собой раствор с точно известной концентрацией определяемого элемента, изотопный состав которого изменён за счет обогащения одним из его изотопов. Использовался смешанный трасер ¹⁵⁰Nd+¹⁴⁹Sm с точностью 0.1% для ¹⁴⁷Sm/¹⁴⁴Nd и 0.005% для ¹⁴³Nd/¹⁴⁴Nd. Измеренное отношение ¹⁴³Nd/¹⁴⁴Nd нормализовано к ¹⁴⁸Nd/¹⁴⁴Nd = 0.241572, что соответствует ¹⁴⁶Nd/¹⁴⁴Nd = 0.71219.

Изотопные исследования проводили на многоколлекторном твердофазном массспектрометре Triton в ГЕОХИ РАН с использованием двухленточного источника ионов для Rb, Sm, Nd и одноленточного – для Sr. Измерения выполняли в статическом режиме с одновременной регистрацией ионных токов разных изотопов элемента.

При обработке результатов выполняют нормирование изотопных отношений для того, чтобы исключить влияние масс-зависимого фракционирования. Нормирование для изотопов стронция производят по изотопному отношению ⁸⁸Sr/⁸⁶Sr, для неодима – по 148 Nd/¹⁴⁴Nd, для самария – по 152 Sm/¹⁴⁷Sm.

Для оценки воспроизводимости и правильности измерений изотопного состава стронция и неодима вместе с каждой серией измерений проводится измерение стандарта. Стандартный раствор Sr – SRM 987, стандарт Nd – JNdi-1. Среднее значение за период проведения исследований, описанных в данной работе, составило ⁸⁷Sr/⁸⁶Sr=0.710244±8 (2 σ ; N=7), ¹⁴³Nd/¹⁴⁴Nd=0.512114±6 (2 σ ; N=10). Погрешность измерения изотопных отношений элемента определяется приборной погрешностью, а для отношения изотопов разных элементов – точностью приготовления трасеров и многими другими причинами. Погрешность измерения изотопного Rb/Sr отношения принимается равной 1% значения, а изотопного Sm/Nd отношения – 0.1%. Обработанные данные сведены в таблице 3 (Приложение).

Значения $\varepsilon_{Sr}(T)$, $\varepsilon_{Nd}(T)$ и модельных возрастов (T_{Nd}) рассчитаны исходя из следующих значений для однородного мантийного резервуара (UR) ⁸⁷Sr/⁸⁶Sr = 0.7045, ⁸⁷Rb/⁸⁶Sr = 0.01039, однородного хондритового резервуара (CHUR): ¹⁴³Nd/¹⁴⁴Nd = 0.512638, ¹⁴⁷Sm/¹⁴⁴Nd = 0.1967 (Jacobsen, Wasserburg, 1984), примитивной мантии (PM) ¹⁴³Nd/¹⁴⁴Nd = 0.513099,

42

 147 Sm/¹⁴⁴Nd = 0.2119. Двустадийные Nd-модельные возрасты T_{Nd2} рассчитаны с использованием среднекорового отношения 147 Sm/¹⁴⁴Nd = 0.13225 (Taylor, McLennan, 2009).

Для определения степени воздействия процессов замещения минералов на Sm-Nd и Rb-Sr изотопные системы пород проведено изучение двух проб из одного крупного образца. Эти детали подробно рассмотрены в главе 4. **Таблица 3.1.** Список отобранных проб для геохронологического исследования U-Pb изотопной системы циркона. Координаты точек опробования приведены в системе Пулково 1942.

№	Образец	Координаты	Серия пород	Название породы	Геологические особенности	Задача геохронологического исследования циркона	
1	2821	N 55°24.86' E 109°12.61'		Эндербиты	Типовое обнажение гранулитового комплекса западной части Богучанской бухты		
2	2816	N 55°23.22' E 109°12.99'	Чарнокитоиды и их ретроградноизменённые разности	Чарнокиты	Образец из краевой части Байкальского "массива" по (Цыганков, 2005)	Проверка предположения о региональном развитии гранулитового метаморфизма, наложенного на различные типы пород. Образен	
3	SB0712B	N 55°25.82' E 109°10.84'		Апочарноки- товые гнейсы	Пластовое тело гнейсов мощностью около 1.5 м (см. рис. 2.6) из чередования с амфиболитами западной части Богучанской бухты	чарнокитоидов 2816 отобран для определения возраста кристаллизации гранитоидов и распространения "массива" по площади.	
4	2906	N 55°23.72' E 109°13.39'		Апочарноки- товые гнейсы	Отобраны с прибрежной части губы Балтаханова.		
5	2914	N 55°22.93' E 109°11.18'		Эндербито- гнейсы	Мезо-лейкократовые породы из чередования двупироксеновых и биотит- пироксеновых сланцев. Эндербито-	Датирование гранулитового метаморфизма и определение возраста кристаллизации циркона протолита эндербито-гнейсов. Образец эндербито- гнейсов 2914 отобран для определения возраста кристаллизации гранитоидов "массива".	
6	AB2	N 55°22.81' E 109°04.36'	Эндербито-гнейсы	Эндербито- гнейсы	типичный образец эндербито-гнейсов района р.Рель, образец 2914 отобран из центральной части Байкальского "массива".		
7	SB072P17	N 55°27.018' E 109°12.078'		Тоналиты	Зона, мощностью около 20 см в составе сложнопостроенного грибообразного тела (см. рис. 2.5)	Определение возраста пород дайкового комплекса	
8	SB072P16	N 55°27.018' E 109°12.078'	Гранитоиды даек	Лейкограниты	Грибообразное тело (рис. 2.5)		
9	SB071P4	N 55°27.028' E 109°11.418'		Лейкограниты	Дайка мощностью около 18 м		

3.4. Изотопно-геохронологическое исследование циркона

При изотопно-геохронологических исследованиях пород и геологических процессов одним из ведущих является уран-торий-свинцовый метод, использующий накопление радиогенных изотопов свинца 206 Pb, 207 Pb и 208 Pb при естественном радиоактивном распаде 238 U, 235 U и 232 Th. Значения возраста могут быть рассчитаны по соотношениям содержания элементов 206 Pb/ 238 U, 207 Pb/ 235 U и 208 Pb/ 232 Th. Благодаря значительной разнице в скоростях распада 238 U и 235 U и ввиду постоянства изотопного отношения современного природного урана (в подавляющем большинстве геологических объектов 238 U/ 235 U=137.88), имеется возможность вычислять значение возраста и по соотношению 207 Pb/ 206 Pb. Таким образом, применяя уран-торий-свинцовый метод значение возраста исследуемого образца можно вычислить по четырем изотопным отношениям, три из которых являются независимыми. Это является большим преимуществом уран-торий-свинцового метода по сравнению с другими изотопными методами, так как позволяет оценить степень надёжности получаемых значений возраста.

Одним из наиболее надёжных минералов-геохронометров считается циркон.

Циркон встречается практически во всех магматических, осадочных и метаморфических породах, его структура прочна и устойчива к преобразованиям. При протекании высокотемпературных наложенных процессов наблюдаются эффекты обрастания цирконов веществом новых генераций при сохранении в ядрах исходного вещества.

Цирконий является четырехвалентным элементом и имеет ионный радиус 0.84 Å. В кристаллической решётке циркона катионы Zr^{+4} легко замещаются катионами U⁺⁴ (близкими по ионному радиусу), в результате распада урана образуется свинец. Нерадиогенный (обыкновенный) свинец (Pb²⁺, 1.29 Å), как правило, не входит в кристаллическую решётку циркона (Watson, et al., 1997). Тh и U являются более совместимыми (ионные радиусы: Th⁴⁺ 1.05 Å, U⁴⁺ 1.00 Å) и присутствуют в кристаллическом цирконе в концентрациях от десятков до тысяч ppm (Hoskin, Schaltegger, 2003). Поэтому весь свинец, содержащийся в цирконе, является, как правило, радиогенным (Cherniak, Watson, 2001).

3.4.1. Выделение циркона из породы. Изготовление шашек.

Циркон выделен для геохронологического исследования из пород (эндербито-гнейсов AB2, 2914, эндербитов 2821, чарнокитов 2816, апочарнокитовых гнейсов SB0712B и 2906, лейкогранитов SB071P4 и SB072P16, тоналитов SB072P17) по стандартной методике с использованием флотационного столика, электромагнитной сепарации и тяжёлых

жидкостей в лаборатории минералогического и трекового анализа ГИН РАН и в ИЗК СО РАН.

Из каждой из проб чарнокитов 2816, эндербитов 2821, апогранулитовых гнейсов 2906 и SB0712B, эндербито-гнейсов AB2 и 2914, лейкогранитов SB071P4 и тоналитов SB072P17 выделено не менее 1 г циркона. Этого количества было достаточно для отбора кристаллов для изучения U-Pb системы минерала. Из образца лейкогранитов SB072P16 выделены единичные зёрна циркона, которые было решено не анализировать.

При исследовании структуры циркона почти всегда наблюдаются не однородные кристаллы, а зональные. Здесь необходимо применение локального U-Th-Pb метода, который позволяет датировать отдельные генерации роста в единичном кристалле.

Для анализа минералов методом лазерной абляции кристаллы запечатывают в шашку из эпоксидной смолы. При изготовлении шашки используются зерна циркона представительной выборки размером не менее 40 мкм, так как диаметр кратера от лазерного луча - 30 мкм. Выделенные зерна циркона с помощью препаративной иглы выкладывались на липкой ленте (двусторонний скотч) под бинокуляром, затем их заливали эпоксидной смолой (смола + отвердитель) для получения стандартной 25 мм шашки. После того как смола застывает, шашка вынимается из формы, ее поверхность шлифуется до появления зерен, затем полируется. Шлифовка производилась вручную, для этого использовались алмазные порошки, алмазные пасты, стекло и картон (перфокарты). Для того чтобы зёрна вскрылись, используют стекло и шлифовальный порошок с зернистостью 14 мкм. Зёрна должны быть вскрыты не более чем на одну треть, чтобы прочно удерживаться эпоксидной смолой во время анализа (рис. 3.3). Далее последовательно производится шлифовка на перфокартах шлифовальными порошками с зернистостью 10, 7, 5 и 3 мкм. После каждой размерности порошка шашка промывается водой в ультразвуковой ванне для удаления его из трещин циркона, а качество шлифовки проверяется под бинокуляром. На последнем этапе проводится полировка шашки алмазными пастами (0.1-0.01 мкм).

Рис. 3.1. Фотография типичной шашки из эпоксидной смолы для анализа циркона в проходящем (А) и отражённом (Б) свете.

Для анализа методом лазерной абляции изготовлено три шашки с цирконом из двух проб эндербито-гнейсов AB2 и 2914 (137 шт. и 104 шт. соответственно), двух проб чарнокитоидов 2816 и 2821 (310 шт. и 170 шт.), пробы апогранулитовых гнейсов SB0712B (148 шт.) и 2906 (75 шт.), пробы тоналитов SB072P17 (138 шт.) и лейкогранитов SB071P4 (74 шт.). Анализ циркона методом лазерной абляции проводился по методике (Костицын, Аносова, 2013) в лаборатории ГЕОХИ РАН в 2010- 2012 гг..

Измерение циркона из проб 2821, AB2 и 2914 повторно проводилось в SHRIMP-центре Академии геологических наук Китая (г. Пекин) в 2013 г. Для этого были изготовлены новые шашки. Кристаллы циркона выложены вручную и имплантированы в эпоксидную смолу вместе с зёрнами геохронологического стандарта циркона M257 (Nasdala et al., 2008) для анализа методом SHRIMP.

3.4.2. Определение содержаний редких и редкоземельных элементов в цирконе

Анализ редких и редкоземельных элементов выполнен в наиболее однородных кристаллах циркона, для которых предварительно проведено исследование U-Pb системы. Концентрации элементов-примесей в цирконе определяли относительно стандарта NIST-610 с помощью ICP-MS спектрометра Element-XR (Thermo-Finnigan) и лазерной установки UP-213 в ГЕОХИ РАН. В целом методика анализа близка к описанной в работе (Belousova et al., 2002) и детально описана в статье (Костицын и др., 2015). Концентрации всех

элементов в цирконе NIST-610 составляют примерно 400 ppm. В качестве внутреннего стандарта использовали ⁹¹Zr. Анализ каждого зерна циркона проводили в заранее выбранной по катодно-люминесцентному изображению точке рядом с точкой датирования. Сначала в течение 50 с замеряли фоны; при этом лазер работал, но луч был перекрыт заслонкой; затем заслонка в заданный момент открывалась и в следующие 110 с происходило испарение образца пучком лазера, а полученный аэрозоль поступал в ICP источник. Внутренний контроль воспроизводимости определения элементов проводился с помощью анализа стандарта циркона GJ-1.

Важно при интерпретации спектров РЗЭ убедиться, что они характеризуют именно циркон, а не включения в нём. Для этого в анализ включены лишние элементы, не свойственные циркону, чтобы по уровню их содержаний понять о присутствии или отсутствии в цирконе инородных минеральных включений и прочих дефектов (Костицын и др., 2015). При построении спектров распределения REE состав циркона нормирован к составу хондрита CI (Sun, McDonough, 1989).

С помощью титанового термометра («Ti-in-zircon») (Watson et al., 2006) рассчитана температура кристаллизации циркона.

3.4.3. Изучение внутреннего строения циркона

Одним из наиболее надёжных минералов-геохронометров является циркон. Однако наряду с несомненными достоинствами циркона имеются определенные ограничения его использования. Циркон как исключительно устойчивый минерал выдерживает условия нахождения в расплаве, при этом у цирконов с сохранившейся кристаллической структурой не нарушается и U-Pb изотопная система. В силу своей химической устойчивости, минерал мало подвержен наложенным воздействиям и позволяет датировать время кристаллизации породы. При протекании высокотемпературных наложенных процессов наблюдаются эффекты обрастания цирконов веществом новых генераций при сохранении в ядрах исходного вещества. При этом не всегда удается решить вопрос о том, какое событие датируется по U-Pb изотопной системе таких цирконов — непосредственно магматизм или протолит породы. Ценным инструментом при определении генезиса циркона в породе катодолюминесценция. Катодолюминесцентное явилась изучение цирконов без разрушения вещества в шашках, подготовленных для определения возраста, позволяет

оценить генезис циркона непосредственно в точке датирования. Именно такой подход стал основным при изотопном датировании сложнопостроенных зёрен минерала.

С помощью приборов оптической микроскопии проводится исследование морфологии, поверхности и внутреннего строения зёрен циркона, а также позволяют выявить зональность, включения в минерале, трещины и другие повреждения, найти неповрежденные части зерна, на которых впоследствии можно выбрать место для точек анализа, чтобы избежать примеси нерадиогенного свинца.

Для циркона из проб эндербито-гнейсов AB2 и 2914, чарнокитоидов 2816 и апочарнокитовых гнейсов SB0712В получены катодолюминесцентные изображения. Катодолюминисцентная съёмка циркона из эндербито-гнейсов AB2 и 2914 проводилась в ЦКП МФТИ на растровом электронном микроскопе Quanta 200 MK2 с приставкой Gatan для изучения катодолюминесценции в диапазоне длин волн от 300 до 1000 нм. Снимки получены с напряжением 30 киловольт (kV), силой тока 20 наноампер (nA=10⁻⁹A). Изображения циркона из чарнокитоидов 2816 и апочарнокитовых гнейсов SB0712В получены на растровом электронном микроскопе TESCAN MIRA3 в ГЕОХИ РАН в режимах катодолюминесценции (CL) и вторичных электронов (SE) при ускоряющем напряжении 15-20 кВ.

Изучение циркона методом обратно-рассеянных электронов (BSE) проводился для пробы эндербитов 2821 в лаборатории локальных методов исследования вещества геологического факультета МГУ на микрозондовом комплексе на базе растрового (сканирующего) электронного микроскопа «Jeol JSM-6480LV» с комбинированной системой рентгеноспектрального микроанализа, объединяющей энергодисперсионный «INCA-Energy 350» (окно ATW-2). Получены растровые электронные изображения в отражённых электронах с ускоряющим напряжением 15 киловольт (kV) и силой тока электронного пучка 15 наноампер ($nA=10^{-9}A$).

Повторно катодолюминесцентная съёмка циркона из проб эндербитов 2821, эндербитогнейсов AB2 и 2914 проводилась в SHRIMP–центре Академии геологических наук Китая (г. Пекин) на электронном микроскопе Hitachi SEM S-3000N с приставкой Gatan ChromaCL и регистратором данных DigiSan II data306 для изучения катодолюминесценции. Снимки получены с напряжением 9 киловольт (kV), силой тока 99 микроампер (μ A=10⁻⁶ A).

3.4.4. Исследование U-Pb изотопной системы циркона

U-Pb геохронологическое исследование проводилось с использованием метода лазерной абляции (лазер UP-213) на масс-спектрометре Element-XR с ионизацией в индуктивносвязанной плазме (LA-ICP-MS) в лаборатории изотопной геохимии и геохронологии ГЕОХИ РАН по методике (Костицын, Аносова, 2013). Для локальных методов определения возраста в единичных зёрнах минералов применяется статистический подход, поэтому необходимо исследовать достаточное количество зёрен циркона: для магматического цирконов, не содержащих ядер и других включений это примерно 50 точек анализа, для сложных цирконов магматического и метаморфического происхождения с двухфазным строением нужно измерить около 100 точек анализа.

Шашки с образцами и стандартами помещались в самодельную камеру из оргстекла, покрытую просветленным под 213 нм кварцевым стеклом толщиной 2 мм. В ходе анализа камера продувалась гелием со скоростью 0.4–0.5 л/мин. После выхода потока гелия из камеры к нему примешивался аргон с примерно вдвое большим расходом. Потоки газов – наиболее важные и чувствительные параметры при настройке оптимального сигнала. Диаметр лазерного пятна при абляции – 30 мкм, частота импульсов – 4 Гц, плотность энергии в пятне ~10–15 Дж/см². Анализ каждого зерна циркона проводился в фиксированной точке по следующей схеме: в течение 50 с замеряли фоны, при этом лазер работал, но луч был перекрыт заслонкой; затем заслонка в заданный момент открывалась и следующие 110 с происходило испарение образца пучком лазера и полученный аэрозоль поступал в ICP источник (рис. 3.2.А). Сканирование масс-спектра осуществлялось по центрам следующих масс: 206-207-208-232-238 с длительностями замера 30-30-15-10-10 мс соответственно. Измерение на массе 204 не проводилось из-за неизменно высоких фонов ртути в спектре.

Пример единичного анализа ненарушенного циркона приведен на рис. 3.2. А (Костицын и др., 2013). Однако, если лазерный луч по мере абляции вскрывал включения, трещины или иные дефекты, содержащие обыкновенный свинец, то временная развертка результатов анализа могла выглядеть, как показано на рис. 3.3. Б. Последующая обработка результатов измерения проводилась с помощью программного пакета Glitter созданной в университете Маккуори (Van Achterbergh et all, 2001). В основном она сводилась к выбору одного интервала на временной развертке с ненарушенными сигналами измеряемых изотопов. В примере на рис. 3.3. Б это был бы интервал между 60-й и 90-й секундами анализа. Сигналы

изотопов свинца с 92-й секунды отчетливо показывают присутствие дефектов с обыкновенным свинцом (трещины или минеральные включения).

Рис. 3.2. Обработка данных в программе Glitter: фильтрация и выбор областей сигнала и фона (Костицын и др., 2013).

После обработки в программе Glitter, данные экспортируются в Excel в формате таблиц, включающей изотопные отношения 207 Pb/ 206 Pb $\pm 1\sigma$, 207 Pb/ 235 U $\pm 1\sigma$, 206 Pb/ 238 U $\pm 1\sigma$, 208 Pb/ 232 Th $\pm 1\sigma$. Погрешности единичных анализов (отношений и возрастов) приводятся на уровне 1 σ , погрешности вычисленных возрастов, в том числе конкордантных, приводятся на уровне 2 σ . Расчёт возраста и анализ U-Pb данных по циркону проводится в Excel с надстройкой Isoplot 4.1. (Ludwig, 2003).

Анализ проводится блоками, которые создаются при помощи пакета программ Element XR. Блок включает в себя последовательность анализов, которая предполагает измерение стандартных образцов в начале и в конце блока. В нашем протоколе каждый блок начинался и заканчивался парой анализов стандарта GJ-1 (Jackson et al., 2004). После первой пары анализов GJ-1 и перед завершающей анализировали стандарт 91500 для независимого контроля правильности результатов. Вся последовательность измерений сохраняется в едином файле.

Природный циркон 91500 аттестован в качестве стандартного образца циркона (Wiedenbeck et al., 1995). За период измерений проведён U-Pb изотопный анализ стандартного образца циркона в 54 точках. В таблице 4 в приложении сведены данные по

изотопным отношениям, полученным в результате измерения стандартных образцов 91500 в ходе проведенной работы и опубликованные данные (Wiedenbeck et al., 1995). Результаты анализа циркона 91500, полученные в ходе данной работы, приведены на рис 3.3.

Рис. 3.3. Диаграмма Тера-Вассербурга с полученными в ходе выполнения настоящей работы результатами анализа стандарта 91500 относительно стандарта GJ-1.

U-Pb изотопная система цирконов трёх проб была узучена профессором Альфредом Крёнером на вторично-ионном масс-спектрометре SHRIMP II в Пекине. Результаты рассмотрены одновременно с данными LA ICP-MS в соавторстве с А. Крёнером (2015). Характеристики прибора описаны De Laeter and Kennedy (1998). Аналитические процедуры изложены в Compston et al. (1992), Claoué-Long et al. (1995), Nelson (1997) and Williams (1998). Перед каждым анализом поверхность участка анализа очищена растеризацией первичного пучка в течение 2 мин. для устранения контаминации обыкновенным свинцом. Уменьшенные отношения 206 Pb/²³⁸U были нормализованы до 0.09101, что соответствует

принятому возрасту 561.3 млн лет для стандартного циркона M257 (Nasdala et al., 2008). Отношения Pb/U в измеренных образцах скорректированы с использованием отношения ln(Pb/U)/ln(UO/U) в стандарте M257 как указано в (Compston et al., 1984) и (Nelson, 1997). Ошибка 1 σ в отношении ²⁰⁶Pb/²³⁸U при анализе всех стандартных цирконов во время этого исследования составила 1.3%. Интенсивность исходного луча составляла 4.2 нА, а применение апертуры Кёллера диаметром 100 µm придавало слегка эллипсовидную форму пятна размером около 30 µm. Разрешение пика в стандартном образце, полученное на массе 254 UO, составило 4920 (на высоте пика 1%), что позволило полностью отделить пик 208 Pb от пика HfO. Анализы проб и стандартов проводились поочерёдно, что позволило оценить Pb⁺/U⁺ дискриминацию. Метод обработки исходных данных и оценки ошибок описан в (Nelson, 1997). Коррекция на нерадиогенный свинец проводится как в работе (Kinny, 1986). Измеренные данные представлены в таблицах 16, 17 и 18 (Приложение). Погрешности единичных анализов (отношений и возрастов) приводятся на уровне 1σ, погрешности вычисленных конкордантных возрастов и пересечений с конкордией – на уровне 2 . Возрасты и ошибки были рассчитаны для отношений ²⁰⁶Pb/²³⁸U, включая ошибку калибровки по 12 стандартам.

Глава 4. Результаты изучения пород гранулитового комплекса Кичерской зоны Байкало-Муйского пояса

4.1. Петрографический состав, петрохимия, геохимия гранулитового комплекса

В составе богучанского гранулитового комплексаь присутствуют чарнокитоиды, апогранулитовые или апочарнокитовые гнейсы и эндербито-гнейсы. Они находятся в чередовании с основными гранулитами.

Чарнокитоиды относятся к чарнокитовой серии, которая рассматриваемой согласно магматической классификации (Frost, Frost, 2008). В работе применяются названия: двуполевошпатовые двупироксеновые гранулиты с кварцем (для краткости и с учётом рассматриваемых ниже условий их формирования далее по тексту – "чарнокитоиды") и их регрессивноизменённые разновидности (апогранулитовые слюдяные или двуслюдяные двуполевошпатовые гнейсы для краткости далее в тексте – "апогранулитовые гнейсы"), двупироксеновые гранулиты среднего состава – "эндербито-гнейсы". Для исследования отобраны образцы из каждого типа пород гранулитового комплекса: чарнокитоиды, апочарнокитовые гнейсы и эндербито-гнейсы.

Точки составов меланократовых, мезократовых и лейкократовых пород нанесены на диаграмму зависимости кремнезёма от суммы щелочей. При использовании этой диаграммы составы основных гранулитов соответствуют монцо-габбро и монцогаббродиоритам, составы чарнокитоидов соответствуют монцонитам (мангеритам), составы эндербито-гнейсов попадают в поле кварцевых диоритов нормального ряда за исключением одного образца и апогранулитовые гнейсы находятся в поле умереннощелочных лейкогранитов (рис. 4.1).

На вариационных диаграммах (рис. 4.2) бо́льшая часть петрогенных элементов в гранулитах четырёх групп, например CaO, Al₂O₃, MgO, Fe₂O₃, TiO₂ связаны отрицательной линейной корреляцией с SiO₂. Это может объясняться трендами, свойственными магматическому фракционированию.

Как видно из этих диаграмм, чарнокитоиды и эндербито-гнейсы практически не различаются по содержаниям петрогенных элементов. Можно отметить лишь низкое содержание K₂O и повышенное содержание CaO в эндербито-гнейсах относительно чарнокитоидов (рис. 4.1, 4.2, табл. 1 Приложение).

54

(по Петрографический кодекс России, 2009, Шарпенок и др., 2013).

Чарнокитоиды имеют нематобластовую и нематогранобластовую структуры, состоят из кварца, плагиоклаза, пироксена, замещённого амфиболом и хлоритом, местами встречаются биотит и мирмекиты, в пертитовых сростках в калиевом полевом шпате находится плагиоклаз (рис. 4.3).

По содержанию кремнезёма это средние породы (56.3-63.7 мас. %), с умеренным содержанием титана (TiO₂=0.4-1.4 мас. %) и алюминия (Al₂O₃=15.5-20.6 мас. %), практически везде содержание натрия и калия одинаковое. По сумме щелочей (6.8-9.5 мас. %) относятся к субщелочному ряду. Эндербито-гнейсы показывают умеренно и сильно фракционированное распределение P3Э (6.5<(La/Yb)_N<19.6) с положительной Eu аномалией (рис. 4.6. A).

Рис. 4.2. Диаграммы Харкера для пород гранулитового комплекса.

Рис. 4.3. Микрофотография типичных чарнокитоидов Кичерской зоны (образец 2823, двуполевошпатовый двупироксеновый гранулит с кварцем). Николи скрещены (А, В), николи параллельны (Б, Г). Пертиты (В, Г) – овальные и ламеллеобразные вростки альбита и олигоклаза в калиевом полевом шпате.

Апогранулитовые гнейсы представляют собой регрессивноизменённые разновидности чарнокитоидов, неравномернозернистые кислые породы (SiO₂=74.3-75.6 мас. %) с гнейсовидной текстурой и содержащие 5-7 % биотита. В их составе присутствуют кварц, калиевый полевой шпат (микроклин-пертит), кислый плагиоклаз (рис. 4.4).

Породы обеднены титаном (TiO₂=0.2-0.3 мас. %), фосфором (P₂O₅=0.03-0.04 мас. %), кальцием (CaO=0.4-1 мас. %), магнием (MgO=0.40-0.65 мас. %) и железом (Fe₂O₃=0.9-1.4 мас. %) (рис. 4.2), являются метаглинозёмистыми (ASI=0.84-0.96). Содержание калия больше, чем натрия (K₂O/Na₂O=1.5-2.3) при сумме щелочей 8.3-9.4 мас. % (рис. 4.1). Породы отличаются высоким содержанием Rb (92-107 ppm), низким Sr (44-88 ppm), показывают умеренно и сильно фракционированное распределение P3Э (7.8 <(La/Yb)_N< 35.9) с отрицательной Eu аномалией (рис. 4.6. Б).

Эндербито-гнейсы преимущественно представлены среднезернистыми породами серой окраски, в отдельных случаях неизменённые разновидности этой группы имеют буроваторозовую окраску. Они имеют гранобластовую структуру (рис. 4.5.), со слабовыраженной полосчатостью, состоят из идиоморфных, преимущественно неизменённых зёрен минералов. В породах присутствует 15-20% темноцветных минералов, представленных клино- и ортопироксеном (гиперстеном), а также кварц, плагиоклаз и калиевый полевой шпат (пертит-антипертит).

Рис. 4.4. Микрофотография двуслюдяного апочарнокитового гнейса Кичерской зоны (образец SB0712B, двуслюдяной гнейс). Николи скрещены (А), николи параллельны (Б).

Рис. 4.5. Микрофотография эндербито-гнейсов Кичерской зоны (образец 2883-1, эндербито-гнейс). Николи скрещены (а), николи параллельны (б).

Рис. 4.6. Графики распределения редкоземельных и редких элементов для чарнокитоидов (А, Б) и апогранулитовых гнейсов (В, Г) и эндербито-гнейсов (Д, Е) западной части Байкало-Муйского пояса.

Содержание кремнезёма среднее (SiO₂=54.3-63.8 мас. %), характерно обогащение фосфором (P₂O₅=0.22-0.34мас. %), кальцием (4.9-8.8 мас. %), магнием (1.83-3.05 мас. %), алюминием (15.6-19 мас. %), содержание натрия больше, чем калия (K₂O/Na₂O=0.16-0.35), по сумме щелочей (4.4-5.5 мас. %) относятся к нормальному ряду. Так же как для многих других гранулитовых комплексов (в частности, для чарнокитов Южной Индии по (Condie, Allen, 1982 и ссылки в ней)), для эндербито-гнейсов характерны низкие концентрации Th (<0.4 ppm), U (<0.01 ppm). Породы характеризуются относительно высоким уровнем и

слабофракционированным распределением РЗЭ ($3.5 < (La/Yb)_N < 6.8$), аномалия Eu не выражена (рис. 4.6. A, Б).

Для всех гранулитов характерно присутствие двух пироксенов или ортопироксенов и развитие в полевых шпатах пертитов или антипертитов.

4.2. Термобарометрическое исследование пород гранулитового комплекса Кичерской зоны Северного Прибайкалья

Нами для определения условий метаморфизма гранулитов выбран образец 2904-5 (биотит-двупироксен-двуполевошпатовый бескварцевый гнейс), в котором при наличии достаточного количества парагенезисов предполагалось уравновешивание минеральной системы в породе. Расчёты выполнены П.Я. Азимовым (ИГГД РАН) в программе TWQ 2.02 (Berman, 1991) с базой данных ВА96 (Berman, Aranovich, 1996; Aranovich, Berman, 1996). Для определения температуры использованы обменные катионные (Fe-Mg) равновесия между ортопироксеном, клинопироксеном и биотитом. Наиболее вероятная величина температуры метаморфизма, для которой эти три термометра сходятся, составляет ~800°С. Прямое определение давления для данного парагенезиса (как и для большинства безгранатовых парагенезисов) невозможно, но можно оценить предельное давление выше которого в системе должен присутствовать кварц. Отсутствие кварца в породе указывает, что давление метаморфизма было меньше 6-7 кбар (Азимов и др., 2017).

Расчёт температуры кристаллизации циркона проведён для 21 зерна образца эндербитов 2821. Концентрации титана в цирконе варьируют от 6.1 до 21.0 ppm, соответствуют образованию кристаллов при температуре от 702 до 813 °C. Средняя концентрация титана 10.6 ppm соответствует температуре 744 °C. Погрешность расчётов одного значения составляет около 20 °C.

Рис. 4.7. Распределение температуры кристаллизации циркона для образца эндербитов 2821, рассчитанной по титановому термометру.

Примеры в литературе показывают, что Ti-in-Zircon термометр регистрирует образование циркона во время охлаждения, при температурах, ниже пиковых для гранулитовой фации метаморфизма (например, Baldwin et al., 2007, Kotkova' and Harley, 2010, Liu et al., 2010, Ewing et al., 2013, ...). Учитывая, что температура для чарнокитоидов, полученная в программе TWQ 2.02, составляет порядка 800 °C (Азимов и др., 2017), а согласно предыдущим исследованиям 700-900 °C, то оценки температуры для зёрен циркона по титановому термометру 702 до 813 °C (рис. 4.7) позволяют предполагать их формирование происходило при спаде P-T параметров в условиях ретроградной стадии гранулитовой фации.

Таким образом, для Кичерской зоны в западной части Байкало-Муйского пояса установлены следующие параметры гранулитового метаморфизма: температура около 800°С, давление около 6-7 кбар. Близкие значения условий гранулитового метаморфизма получены А.А. Цыганковым (1996) и Ю.М. Лебедевой с соавторами (2016). Рассчитанные температуры кристаллизации циркона в эндербитах согласуются с петрологическими данными по температурам гранулитового метаморфизма этого района. Кроме этого, определены P-T условия высокотемпературного амфиболитового метаморфизма повышенных давлений в образцах амфиболитов Слюдинского массива (700-750°C и 10-12 кбар) (Азимов и др., 2017). Отсутствие подходящих парагенезисов не позволили провести термобарометрические исследования условий амфиболитового метаморфизма в амфиболитах с южной оконечности мыса Лударь (Азимов и др., 2017).

Таким образом, для богучанского гранулитового комплекса устанавливается ранний гранулитовый метаморфизм низких давлений, на который наложились регрессивные преобразования амфиболитовой фации.

4.3. Rb-Sr и Sm-Nd изотопно-геохимические данные для гранулитов

Для исследования отобраны следующие образцы чарнокитоидов, апочарнокитовых гнейсов и эндербито-гнейсов (рис. 3.1): чарнокиты пробы 2821 – типовое обнажение гранулитового комплекса западной части Богучанской бухты, Мыс Писаный Камень. Пробы чарнокитоидов 2905-4 и SB094Б и апочарнокитовых гнейсов 2951 взяты с прибрежной части губы Балтаханова. Образец чарнокитов 2816 отобран из краевой части массива, описанного Байкальского описанного выше. Эндербито-гнейсы 2914 представляют собой центральную часть Байкальского массива (вблизи во 806.0). Пробы эндербито-гнейсов АВ2, 2883-1 и 2883-11, SB0716Б рассматриваются как типичные образцы полосы выходов эндербито-гнейсов, протягивающейся субмеридионально от левобережья р.Рель к во 806.0м (рис. 4.10). Апочарнокитовые гнейсы (SB0712Б) Богучанской бухты и гнейсы пробы 2906, отобранные с прибрежной части губы Балтаханова, также отнесены к гранулитовому комплексу. Всего взято 12 проб наиболее неизменённых пород гранулитового комплекса.

Результаты изучения Rb-Sr и Sm-Nd изотопных систем пород гранулитового комплекса приведены в табл. 3 (Приложение) и представлены на рис. 4.7.

Пять проб чарнокитоидов характеризуются содержаниями: Rb=10-45 г/т; Sr=540-735 г/т, 87 Rb/ 86 Sr изотопные отношения варьируют от 0.0414 до 0.1929, а 87 Sr/ 86 Sr – от 0.70329 до 0.70525. Начальное изотопное отношение стронция (для 600 млн. лет) (87 Sr/ 86 Sr)₀ находится в узком диапазоне 0.70294-0.70360. Содержания Sm в этих образцах равно 1.9-8.1 г/т, Nd = 12-37 г/т. 147 Sm/ 144 Nd изотопные отношения варьируют от 0.0964 до 0.1317, 143 Nd/ 144 Nd – от 0.512339 до 0.512535. Начальное изотопное отношения варьируют от 0.0964 до 0.1317, 143 Nd/ 144 Nd)₀ находится в узком диапазоне 0.511960-0.512017.

В двух пробах апочарнокитовых гнейсах повышенные содержания рубидия (Rb=99 и 110 г/т) и пониженные содержания стронция (Sr=41 и 92 г/т) относительно чарнокитоидов. 87 Rb/ 86 Sr изотопные отношения высокие, равны 3.128 и 7.874, а 87 Sr/ 86 Sr 0.73144 и 0.77017 соответственно. Начальное изотопное отношение стронция (для 600 млн. лет) (87 Sr/ 86 Sr)₀ равно 0.70279 и 0.70467. Содержания Sm в этих образцах равно 4.2 и 5.1 г/т, Nd = 20.7 и 32.1 г/т. 147 Sm/ 144 Nd изотопные отношения равны 0.0969 и 0.1219, 143 Nd/ 144 Nd – 0.512282 и 0.512499. Начальное изотопное отношение неодима (для 600 млн. лет) (143 Nd/ 144 Nd)₀ равно 0.511902 и 0.512019.

Чарнокитоиды и апочарнокитовые гнейсы
Эндербито-гнейсы

Рис. 4.8. График зависимости $\varepsilon_{Nd}(T)$ от $\varepsilon_{Sr}(T)$ для пород гранулитового комплекса. T = 600 млн лет (взято по (Амелин и др., 2000).

Пять проб эндербито-гнейсов характеризуются низким содержанием Rb=1.3-9.8 г/т; содержание стронция Sr=330-610 г/т, соответственно ⁸⁷Rb/⁸⁶Sr изотопные отношения пониженные и варьируют от 0.0063 до 0.0856, а ⁸⁷Sr/⁸⁶Sr высокие, находятся в диапазоне от 0.70686 до 0.70782. Начальное изотопное отношение стронция (для 600 млн. лет) (⁸⁷Sr/⁸⁶Sr)₀ находится в диапазоне от 0.70681 до 0.70762. Содержания Sm в этих образцах равно 2.8-6.5 г/т, Nd = 13.7-28.1 г/т. ¹⁴⁷Sm/¹⁴⁴Nd изотопные отношения варьируют от 0.1221 до 0.1394,

¹⁴³Nd/¹⁴⁴Nd – от 0.511871 до 0.512001. Начальное изотопное отношение неодима (для 600 млн. лет) (¹⁴³Nd/¹⁴⁴Nd)₀ находится в диапазоне 0.511375-0.511453.

Полученные по 12 образцам гранулитов изотопные составы Nd и Sr находятся в соответствии друг с другом. Они отражают существенно коровое происхождение пяти образцов эндербито-гнейсов и происхождение за счёт значительного вклада ювенильного вещества семи образцов чарнокитоидов. Возможно предположить, что полученные в работе изотопные составы гранулитов могут быть частью тренда смешения корового и мантийного компонентов. На рис. 4.8 показана область, где могли бы располагаться промежуточные между чарнокитоидами и эндербито-гнейсами изотопные составы пород. Такие составы не были обнаружены при изучении гранулитового комплекса. Это может быть связано с тем, что соответствующие этим промежуточным составам породы существуют, но не найдены или не отобраны, либо с отсутствием смешения. В случае смешения можно рассматривать полученные изотопные составы гранулитов как крайние члены смешения, либо как промежуточные.

Рис. 4.9. График зависимости $\varepsilon_{Nd}(T)$ от содержания SiO₂ для пород гранулитового комплекса. T= 600 млн лет.

Для проверки наличия признаков смешения построен график зависимости содержания SiO_2 в пробах от $\varepsilon_{Nd}(T)$. Отсутствие корреляции (рис. 4.9) свидетельствует о том, что предположение не верно и смешения в данном случае не наблюдается. Поэтому сделан вывод о том, что гранулитовая ассоциация гетерогенна. Для каждой точки изотопного состава образца рассчитан модельный возраст (рис. 4.10, табл. 4.1). Модельный возраст T_{Nd} позволяет оценить время отделения породы (или её протолита) от мантийного источника. Модель предполагает, что образец (или его протолит) сохранил систему замкнутой, т.е. Sm/Nd отношение не было нарушено.

Метаморфические породы, в том числе чарнокитоиды, напрямую образоваться при частичном плавлении мантийного источника не могут. В таком случае применяют двустадийную модель, которая предполагает, что до того момента, когда образовалась метаморфическая порода, её протолитом был коровый субстрат. Средний состав коры принимается в качестве первой стадии эволюции этого вещества.

Таблица 4.1. Значения модельных возрастов по одностадийной модели (T_{Nd}) и двустадийной модели (T_{Nd2}) для гранулитов Кичерской зоны. Названия пород см. табл. 3 (Приложение)

Образец	SB09 4b	2821	2816	2906	2905-4	2951	SB07 12v	AB-2	2914	SB09 16b	2883-11	2883-1
Т _{Nd} , млрд. лет	1.00	1.02	1.01	1.08	1.10	1.07	1.02	2.18	2.26	2.30	2.08	2.17
Т _{Nd2} , млрд. лет	1.18	1.08	1.10	1.30	1.14	1.08	1.07	2.20	2.20	2.15	2.27	2.29

На карте (рис. 4.12) образцы в зависимости от модельного возраста выделены и покрашены в разные цвета: модельный возраст (T_{Nd2}) эндербито-гнейсов составляет 2.2-2.3 млрд лет, модельный возраст (T_{Nd2}) чарнокитоидов (и апогранулитовых гнейсов) Кичерской зоны составляет 1.1-1.3 млрд лет.

Близкие начальные изотопные отношения неодима для чарнокитоидов и апочарнокитовых гнейсов ещё раз подтверждают рассмотрение этих пород в качестве единой серии. Отличные от них начальные изотопные отношения неодима для эндербитогнейсов указывают на гетерогенность богучанского гранулитового комплекса.

Для определения степени воздействия процессов замещения минералов на Sm-Nd и Rb-Sr изотопные системы пород проведено изучение двух проб из одного крупного образца.

Рис. 4.11. График зависимости $\varepsilon_{Sr}(T)$ от $\varepsilon_{Nd}(T)$ для эндербито-гнейсов Кичерской зоны.

Первая проба представлена неизменёнными эндербито-гнейсами (образец 2883-1). Пироксен, плагиоклаз, кварц и калиевый полевой шпат в ней неизменены. Во второй пробе ретроградноизменённых эндербито-гнейсов (образец 2883-11) клинопироксен замещён амфиболом и хлоритом, плагиоклаз соссюритизирован. Эти точки относятся к эндербито-гнейсам, на графике 4.11. имеют самые низкие значения $\varepsilon_{Nd}(T)$ и самые высокие значения ε_{Sr} (для неизменённых эндербито-гнейсов $\varepsilon_{Nd}(T) = -9.56$, $\varepsilon_{Sr}(T) = =+45.6$; для ретроградноизменённого $\varepsilon_{Nd}(T) = -9.3$, $\varepsilon_{Sr}(T) = +43.8$).

Получается, что как Sm-Nd, так и Rb-Sr изотопные системы не были сильно нарушены при образовании вторичных минералов.

Рис. 4.12. Схема геологического строения района междуречья Слюдянка-Рель, северозападное побережье оз. Байкал (составили А.А. Разумовский, А.А. Федотова, Е.В. Хаин (2009) с использованием материалов (Сафронов и др., 1968; Конников и др., 1999; Амелин и др., 2000 и др.). Легенду к карте см. рис. 2.1. Зелёными ромбами показаны места отбора образцов чарнокитоидов, бордовыми ромбами – места отбора проб эндербито-гнейсов,

красными ромбами – места отбора проб тоналит-плагиогранит-гранитной серии.

Таким образом, в результате исследования изотопных Rb-Sr и Sm-Nd систем установлена гетерогенность протолитов пород гранулитового комплекса. Значения $\varepsilon_{Nd}(T)$ для эндербито-гнейсов составляют –9.6... –8, начальное изотопное отношение стронция (для 600 млн. лет) (87 Sr/ 86 Sr)₀ находится в диапазоне 0.7068-0.7076. Эндербито-гнейсы имеют коровые характеристики. Значения $\varepsilon_{Nd}(T)$ для чарнокитоидов и апочарнокитовых гнейсов Кичерской зоны варьируют от +0.7 до +3. Начальное изотопное отношение стронция (для 600 млн. лет) (87 Sr/ 86 Sr)₀ составляет 0.7029-0.7047. Чарнокитоиды и апочарнокитовые гнейсы могут быть образованы за счёт существенного вклада вещества деплетированной мантии.

4.4. Морфология, геохимические и U-Pb изотопные исследования циркона

Из из шести проб гранулитов Северного Прибайкалья выделен циркон. Внутреннее строение кристаллов циркона изучено оптическими и катодолюминесцентными методами. Данные о цвете, морфологии, внутреннем строении циркона изученных проб и содержании в нём урана и тория сведены в табл. 5 (Приложение).

Циркон из пробы эндербита 2821 (рис. 4.13) отобран из размерной фракции от 70 до 150 мкм. Зёрна минерала от прозрачного до коричневатого цвета, трещиноватые, большинство округлые. В основном циркон наблюдается в виде призматических и короткопризматических кристаллов (К_{удл} = от 1:2 до 1:3), со сглаженными вершинами).

Рис. 4.13. Катодолюминесцентные изображения циркона из пробы эндербита 2821, полученные при помощи электронного микроскопа Hitachi SEM S-3000N.

Почти все вскрывшиеся цирконы имеют концентрическое зональное строение в виде тёмных и светлых тонких полос (рис. 4.13, 4.14). Концентрическая зональность считается характерной особенностью циркона, кристаллизовавшегося в ходе магматических процессов (Corfu et al., 2003). Она связана с циклическими вариациями физических или химических условий вблизи поверхности растущего зерна минерала в ходе роста кристалла.

Для изучения состава включений в цирконе были выбраны зёрна минерала из пробы эндербита 2821 (рис. 4.14). В качестве микровключений в изученном цирконе установлены апатит, кварц, альбит, кпш, сульфид железа, сфен, фосфаты иттрия и РЗЭ, эпидот и биотит. Это свидетельствует о росте циркона с одновременной кристаллизацией других минералов.

Рис. 4.14. Растровые электронные изображения циркона из пробы двупироксенового гранулита 2821, полученные методом отраженных электронов (BSE) при помощи электронного микроскопа «Jeol JSM-6480LV».

Рис. 4.15. Диаграмма распределения редкоземельных элементов в цирконе из эндербитов пробы 2821.

Результаты измерения элементов-примесей, в том числе редкоземельных элементов для цирконов из эндербитов (проба 2821) приведены в табл. 6 (Приложение) и на рис. 4.15. Полученные профили распределения РЗЭ обычны для циркона и отражают известную кристаллохимическую закономерность – рост коэффициента распределения в ряду РЗЭ с уменьшением ионного радиуса от лантана к лютецию с отчётливо проявленными максимум церия (величина Ce/Ce* лежит в интервале 2-40) и минимумом европия (величина Eu/Eu* лежит в интервале 0.12-0.31). Содержание Hf от 7049 до 7681, в среднем 7330 ppm. Среднее содержание Y – 1438 ppm. Компактное поле распределений РЗЭ указывает на однородный состав расплавов, из которых кристаллизовался циркон.

Для эндербитов пробы 2821 проведены измерения изотопных отношений ²⁰⁶Pb/²³⁸U, ²³²Th/²³⁸U, ²⁰⁷Pb/²³⁵U и ²⁰⁷Pb/²⁰⁶Pb 48 зёрен циркона методом лазерной абляции для определения возраста зёрен (табл. 8, Приложение).

Содержания урана в цирконе варьируют от 42 до 339 ppm, тория – от 15 до 240, отношение Th/U колеблется около 0.6 (рис. 7.5; табл. 8, Приложение).
Построен график с конкордией Аренса-Везерилла по отношениям ²⁰⁶Pb/²³⁸U и ²⁰⁷Pb/²³⁵U (рис. 4.16 В), 46 точек оказались конкордатными (лежат вдоль конкордии, показанной синей линией). Две точки не ложатся на конкордию и находятся в стороне более древнего возраста. На графике Тера-Вассербурга (рис. 4.16 А, Б) проведена дискордия, верхнее пересечение которой обусловлено примесью обыкновенного свинца (точка ²⁰⁷Pb/²⁰⁶Pb \approx 0.84, ²³⁸U/²⁰⁶Pb \approx 0 по (Костицын, 2004). Две "отлетающие" точки ложатся вдоль этой дискордии. Рассчитанный возраст составляет 607 ± 3 млн лет.

Рис. 4.16. Диаграммы для данных, полученным методом лазерной абляции по 48 точкам анализа циркона из пробы эндербитов 2821:

Рис. А) Диаграмма с конкордией в координатах Тера-Вассербурга (Tera and Wasserburg, 1972). Верхнее пересечение дискордии с конкордией не имеет возрастного смысла и обусловлено примесью обыкновенного свинца. Б) На диаграмме Тера-Вассербурга показано нижнее пересечение дискордии с конкордией. В) Диаграмма с конкордией в

координатах Аренса-Везерилла. Верхнее пересечение дискордии не имеет возрастного смысла и обусловлено примесью обыкновенного свинца. Эллипсами показаны погрешности измерения для каждого анализа на уровне 1 σ . Погрешности вычисленных значений возраста – 2 σ . Г) Диаграмма распределения возрастов по ²⁰⁶Pb/²³⁸U изотопному отношению, скорректированному на контаминацию обыкновенным свинцом. На рисунке приведено также фото типичного зерна циркона из исследованной пробы.

11 игольчатых удлинённых кристаллов циркона из этой же пробы эндербитов 2821 были проанализированы на SHRIMP II. Содержания урана в зёрнах циркона варьируют от 42 до 146 ppm, тория – от 29 до 106, отношение Th/U равно 0.7.

Все точки легли на конкордию, полученная оценка возраста составляет 640 ± 5 млн лет (рис. 4.17). Этот возраст интерпретируется как время образования протолита эндербитов. Методом лазерной абляции получено время 607 ± 3 млн лет, соответствующее нижней границе проявления регрессивной амфиболитовой стадии, при которой кристаллизовался циркон. Подробнее эти выводы обсуждаются в главе 7.1.

Рис. 4.17. Диаграмма с конкордией Аренса-Везерилла для циркона из эндербитов 2821. Погрешность вычисленного значения возраста по 11 зёрнам циркона методом SHRIMP составляет 2σ.

Циркон из пробы чарнокитоида 2816 (рис. 4.18) отобран из размерной фракции от 70 до 150 мкм, зёрна от прозрачного до розовато-коричневатого, бурого цвета. Отмечается, что среди выделенного циркона в основном встречаются короткопризматические зёрна с К_{удл} = 1:2 с осцилляторной зональностью, часто со сглаженными вершинами, но есть циркон с хорошо различимыми вершинами. Кристаллы сильнотрещиноватые, имеют корродированную поверхность. Отмечаются зёрна с высоколюминесцентными обрастаниями.

Рис. 4.18. Изображения циркона из пробы чарнокитов 2816, полученные при помощи электронного микроскопа MIRA3 TESCAN: катодолюминесцентное изображение (А) и фото в режиме вторичных электронов (Б). Тёмные округлые области – это кратеры от

анализа.

Для апогранулитовых гнейсов пробы 2816 проведено измерение методом лазерной абляции 42 зёрен, построен график с конкордией Аренса-Везерилла по 206 Pb/ 238 U и 207 Pb/ 235 U (рис. 4.19. В), 30 точек оказались конкордатными (лежат вдоль конкордии, представленной синией линией). Часть точек не ложатся на конкордию и находятся в стороне более древнего возраста. На графике Тера-Вассербурга (рис. 4.19. А, Б) проведена дискордия, верхнее пересечение которой обусловлено примесью обыкновенного свинца. Точки ложатся вдоль этой дискордии. Рассчитанный возраст составляет 618 ± 4 млн лет.

Рис. 4.19. Диаграммы для данных по 42 точкам анализа циркона из пробы апогранулитовых гнейсов 2816:

Рис. А) Диаграмма с конкордией в координатах Тера-Вассербурга (Tera and Wasserburg, 1972). Верхнее пересечение дискордии с конкордией не имеет возрастного смысла и обусловлено примесью обыкновенного свинца. Б) На диаграмме Тера-Вассербурга показано нижнее пересечение дискордии с конкордией. В) Диаграмма с конкордией в координатах Аренса-Везерилла. Верхнее пересечение дискордии не имеет возрастного смысла и обусловлено примесью обыкновенного свинца. Эллипсами показаны погрешности измерения для каждого анализа на уровне 1 σ . Погрешности вычисленных значений возраста – 2 σ . Г) Диаграмма распределения возрастов по ²⁰⁶Pb/²³⁸U изотопному отношению, скорректированному на контаминацию обыкновенным свинцом. На рисунке приведено также фото типичного зерна циркона из исследованной пробы.

Циркон из пробы апогранулитового гнейса 2906 (рис. 4.20) отбирался из размерной фракции от 70 до 150 мкм. Зёрна минерала прозрачные, округлые, овальные, со сглаженными вершинами. В цирконе отмечается осцилляторная зональность. Кристаллы имеют корродированную поверхность.

Рис. 4.20. Изображения циркона из апогранулитовых гнейсов пробы 2906, полученные при помощи электронного микроскопа Quanta 200 MK2: катодолюминесцентное изображение (А) и фото в режиме обратно-рассеянных электронов (Б). Тёмные округлые области – это кратеры от анализа.

Для апогранулитовых гнейсов пробы 2906 проведено измерение методом лазерной абляции 42 зёрен, построен график с конкордией Аренса-Везерилла по 206 Pb/ 238 U и 207 Pb/ 235 U (рис. 4.21. В), 35 точек оказались конкордатными (лежат вдоль конкордии, представленной синией линией). Семь точек не ложатся на конкордию и находятся в стороне более древнего возраста. На графике Тера-Вассербурга (рис. 4.21. А, Б) проведена дискордия, верхнее пересечение которой обусловлено примесью обыкновенного свинца. Точки ложатся вдоль этой дискордии. Рассчитанный возраст составляет 632 ± 4 млн лет.

Рис. 4.21. Диаграммы для данных по 42 точкам анализа циркона из пробы апочарнокитовых гнейсов 2906:

Рис. А) Диаграмма с конкордией в координатах Тера-Вассербурга (Tera and Wasserburg, 1972). Верхнее пересечение дискордии с конкордией не имеет возрастного смысла и обусловлено примесью обыкновенного свинца. Б) На диаграмме Тера-Вассербурга показано нижнее пересечение дискордии с конкордией. В) Диаграмма с конкордией в координатах Аренса-Везерилла. Верхнее пересечение дискордии не имеет возрастного смысла и обусловлено примесью обыкновенного свинца. Эллипсами показаны погрешности измерения для каждого анализа на уровне 1 σ . Погрешности вычисленных значений возраста – 2 σ . Г) Диаграмма распределения возрастов по ²⁰⁶Pb/²³⁸U изотопному отношению, скорректированному на контаминацию обыкновенным свинцом. На рисунке приведено также фото типичного зерна циркона из исследованной пробы.

Циркон из пробы апогранулитового гнейса SB0712B отобран из размерной фракции от 70 до 150 мкм (рис. 4.22). Зёрна минерала прозрачные, короткопризматические (К_{удл.} около 1:2), часто округлые, овальные, со сглаженными вершинами, отмечаются удлинённые

цирконы с призматическими вершинами. Циркон имеет тонкую осцилляторную зональность и высокоурановые "затёки" внутри кристаллов (тёмные в CL).

Рис. 4.22. Изображения циркона из пробы апочарнокитовых гнейсов SB0712B, полученные при помощи электронного микроскопа MIRA3 TESCAN: катодолюминесцентное изображение (А) и фото в режиме вторичных электронов (Б). Тёмные округлые области – это кратеры от анализа.

Для апогранулитовых гнейсов пробы SB0712В проведено измерение методом лазерной абляции 42 зёрен, построен график с конкордией Аренса-Везерилла по ²⁰⁶Pb/²³⁸U и ²⁰⁷Pb/²³⁵U (рис. 4.23. В), 39 точек оказались конкордатными (лежат вдоль конкордии, представленной синией линией). Три точки не ложатся на конкордию и находятся в стороне более древнего возраста. На графике Тера-Вассербурга (рис. 4.23. А, Б) проведена дискордия, верхнее пересечение которой обусловлено примесью обыкновенного свинца. Точки ложатся вдоль этой дискордии. Рассчитанный возраст составляет 608 ± 4 млн лет.

Рис. А) Диаграмма с конкордией в координатах Тера-Вассербурга (Tera and Wasserburg, 1972). Верхнее пересечение дискордии с конкордией не имеет возрастного смысла и обусловлено примесью обыкновенного свинца. Б) На диаграмме Тера-Вассербурга показано нижнее пересечение дискордии с конкордией. В) Диаграмма с конкордией в

координатах Аренса-Везерилла. Верхнее пересечение дискордии не имеет возрастного смысла и обусловлено примесью обыкновенного свинца. Эллипсами показаны погрешности измерения для каждого анализа на уровне 1 σ . Погрешности вычисленных значений возраста – 2σ . Г) Диаграмма распределения возрастов по ²⁰⁶Pb/²³⁸U изотопному отношению, скорректированному на контаминацию обыкновенным свинцом. На рисунке приведено также фото типичного зерна циркона из исследованной пробы.

В таблицах 8-11 (Приложение) сведены изотопные отношения и значения возраста, полученные при исследовании U-Pb изотопной системы циркона чарнокитоидов и апочарнокитовых гнейсов гранулитового богучанского комплекса методом лазерной абляции и обработки первичных данных. Результаты обсуждаются в главе 7.

Исследована U-Pb изотопная система циркона двух проб эндербито-гнейсов Кичерской зоны из группы гранулитов с раннепротерозойским неодимовым модельным возрастом.

Циркон из пробы эндербито-гнейсов 2914 из размерной фракции от 70 до 150 мкм представлен двумя разновидностями: округлые, овальные и удлинённые призматические (коэффициент удлинения 1:2-1:4) с различимыми пирамидальными вершинами (рис. 4.23). Цвет кристаллов от прозрачного до светло-коричневого.

Рис. 4.24. Катодолюминесцентные изображения циркона из пробы эндербито-гнейсов 2914, полученные при помощи электронного микроскопа Quanta 200 MK2. А) Встречаются призматические кристаллы со сглаженными вершинами. Б) Овальные, округлые зёрна.

Акцессорный циркон эндербито-гнейсов AB2 из размерной фракции от 70 до 250 мкм представлен также двумя разновидностями: удлинённые призматические кристаллы (с

Кудл = 1:4) со сглаженными гранями и тонкой зональностью, и округлые, изометричные и овальные зёрна с множеством сильно сглаженных граней (рис. 4.25). Весь циркон прозрачный, бесцветный.

Рис. 4.25. Катодолюминесцентные электронные изображения циркона из эндербитогнейсов AB2, полученные при помощи электронного микроскопа Quanta 200 MK2. А) Встречаются призматические кристаллы со сглаженными вершинами. Б) Овальные, округлые зёрна, внутри зёрен наблюдаются ядра.

В таблицах 12 и 13 (Приложение) сведены данные, полученные в результате анализа методом лазерной абляции на ELEMENT XR: изотопные отношения и значения возраста циркона. По значениям отношений ²⁰⁶Pb/²³⁸U и ²⁰⁷Pb/²³⁵U построены графики с конкордией Аренса-Везерилла (рис. 4.26). На графиках эллипсами показана погрешность 1σ.

Проанализировано 84 зерна циркона эндербито-гнейсов AB2 (рис. 4.26. А). Точки расположились вдоль конкордии в диапазоне от 790 до 600 млн. лет. В цирконе эндербитогнейсов 2914 проанализировано 56 зёрен циркона (рис. 4.26. Б). И в этом случае также все точки растянулись вдоль конкордии, от 840 до 740 млн. лет.

Рис. 4.26. Диаграммы с конкордией Аренса-Везерилла для циркона эндербито-гнейсов AB2 (A) и 2914 (Б). Точки анализа лежат вдоль дискордии, расположенной практически по касательной к линии конкордии, представленной синией линией. Эллипсами изображены погрешности измерения для каждого анализа на уровне 1σ. Показаны значения возраста верхнего и нижнего пересечений линии дискордии. Погрешности вычисленных значений возраста равны 2σ.

Циркон из эндербито-гнейсов 2914 и AB2 изучен в SHRIMP-центре Академии геологических наук Китая (г. Пекин) профессором А.Крёнером (Университет г. Майнц). Получены новые катодолюминесцентные снимки кристаллов циркона проб 2914, AB2 при помощи электронного микроскопа Hitachi SEM S-3000N, благодаря которым удалось выявить следующее:

В цирконе из эндербито-гнейсов 2914 выделяются различные типы циркона. Наиболее распространены длиннопризматические зёрна (К_{удл} = 1:4) со сглаженными вершинами и пирамидальными вершинами. В этом цирконе выявляется тонкая магматическая зональность. Многие зёрна имеют узкие, высоколюминесцентные оболочки. Следует отметить то, что некоторые кристаллы в разной степени фрагментированы, раздроблены и кроме оболочек содержат отдельные трещины (рис 4.27. Б) или сеть трещин (рис. 4.28), заполненные позднеобразованным цирконом.

Рис. 4.27. Катодолюминесцентные изображения циркона из пробы эндербито-гнейсов 2914, полученные при помощи электронного микроскопа Hitachi SEM S-3000N.

- А) С полосчатой и осцилляторной зональностью и тонкой метаморфической каймой.
 - Б) С округлыми вершинами и новообразованным цирконом по трещинам.

В) Магматическое ядро в метаморфической оболочке.

Часто встречаются овальные, округлые, часто многогранные зёрна. Большая часть кристаллов циркона имеет осцилляторную зональность. В некоторых зёрнах циркона пробы 2914 наблюдаются корродированные ксеногенные ядра без зональности, обросшие высоколюминесцентными оболочками (рис. 4.27. В).

Рис. 4.28. Катодолюминесцентные изображения трещиноватого циркона из эндербитогнейсов 2914. А) Многочисленные трещины в магматическом цирконе заполнены высоколюминесцентным (низкоурановым) материалом. Б) В трещиноватом зерне показано объединение заполненных трещин с оболочкой.

Большинство кристаллов циркона из эндербито-гнейсов AB2 длиннопризматические с округлыми вершинами и полосчатой зональностью, характерной для габбровых пород. Есть также зёрна с довольно гомогенной катодолюминесценцией или со светло-серыми и серыми пятнами. Немногие зёрна имеют осцилляторную зональность и тонкие метаморфические оболочки. Также встречаются округлые многогранные цирконы со слабой секторальной зональностью, обусловленной неодинаковым образом поступления примесей в минерал через различные элементы огранения растущего кристалла (вершины, рёбра, грани) (рис. 4.29. Б). Условия образования таких зёрен относят к фации высокоградного метаморфизма.

А) С полосчатой зональностью и тонкой метаморфической каймой.

Б) С секторальной зональностью.

Данные SHRIMP для эндербито-гнейсов 2914 и AB2 сведены в таблицах 17 и 18 соответственно (Приложение).

Результаты исследования шести зёрен циркона из пробы эндербито-гнейсов 2914 на SHRIMP II определяют конкордантный возраст 826±8 млн лет (рис. 4.30). Четыре других точки обладают более молодым возрастом, и с учётом ошибки, можно предположить, что

они конкордантны. Четыре анализа высоколюминесцентных и низкоурановых метаморфических оболочек показывают возраст 640 ± 7 млн лет.

Рис. 4.30. Диаграмма с конкордией для циркона эндербито-гнейсов 2914. Показаны результаты анализа 6 магматических зёрен циркона и 4 метаморфических оболочек. Все точки ложатся на линию конкордии.

Результаты измерения циркона из пробы эндербито-гнейсов AB2 на SHRIMP II сходны с данными для эндербито-гнейсов 2914. Результаты изучения U-Pb изотопной системы пяти зёрен дали конкордантный возраст 826 ± 8 млн лет (рис. 4.31. A), который совпадает с возрастом магматического циркона образца 2914 (рис. 4.30). Три низкоурановых метаморфические оболочки с конкордантным возрастом 640 ± 10 млн лет и три анализа магматических кристаллов находящихся между двух конкордантных групп совпадают с результатами для эндербито-гнейсов 2914. Результаты изучения U-Pb изотопной системы семи круглых зёрен метаморфического циркона показывают конкордантное значение возраста 640 ± 4 млн лет (рис. 4.31. Б).

Рис. 4.31. Диаграмма с конкордией для циркона из эндербито-гнейсов AB2. А) Магматические цирконы с метаморфическими оболочками. Б) Метаморфические зёрна циркона.

Выделено два типа гранулитов, испытавших общий метаморфизм не позднее 610 млн лет назад. Эти гранулиты различаются по геохимическим и изотопным характеристикам Sr и Nd, и внутреннему строению акцессорного циркона. Протолиты эндербито-гнейсов были образованы 2.3 - 2.2 млрд лет из обогащённого материала, раннепротерозойской континентальной коры ($\epsilon_{Nd}(800 \text{ млн лет}) = -9.6... - 8$, $\epsilon_{Sr}(800 \text{ млн лет}) = +34.2...+45.5)$), чарнокитоиды характеризуются позднемезопротерозойским Nd-модельным возрастом (T_{Nd2}) = 1.2 - 1.1 млрд лет) и значениями $\epsilon_{Nd}(600 \text{ млн лет}) = +0.7...+3.0$, $\epsilon_{Sr}(600 \text{ млн лет}) = -6.9...-22.4$).

При сравнении результатов исследования U-Pb изотопной системы циркона методами LA-ICP-MS и SHRIMP можно сделать вывод, что точки анализов находятся в одном и том же диапазоне. Ранняя генерация циркона образовалась около 830 млн лет назад, поздняя кристаллизовалась и перекристаллизовывалась в диапазоне возрастов 640 – 610 млн лет назад. Подробнее эти результаты обсуждаются в главе 7.

Глава 5. Пироксенит-троктолит-габбровая ассоциация массива Тонкого

мыса

Одной из целей работы являлось изучение магматических ассоциаций ультрамафитов и мафитов пород западной части Байкало-Муйского пояса, петрохимии пород, геохимии редких и редкоземельных элементов, направленное на определение их происхождения.

5.1. Петрографический состав, петрохимия, геохимия массива Тонкий мыс

Петрографически охарактеризованы образцы основных пород Тонкого Мыса. Наименее изменённые образцы пород выбраны для изотопных исследований.

Петрографическое исследование габброидных массивов показало, что габброиды Тонкого мыса отличаются от габбро-норитов, распространённых совместно с эндербитогнейсами и принадлежат к пироксенит-троктолит-габбровой серии пород, сформировавших массивы Слюдинский, Курлинский.

Рис. 5.1. Микрофотография троктолитов Тонкого мыса (образец SB072P11): А) Николи скрещены, Б) Николи параллельны

Троктолиты – типичная порода массива Тонкий мыс. Это крупнозернистая порода с коронарной структурой (рис. 5.1). Минеральный состав: 45-50 % плагиоклаза, около 45% оливина, 5-10 % ортопироксена, около 1% акцессорных минералов. Зёрна плагиоклаза в разных образцах варьируют от 0.5 до 2 см, в некоторых встречаются крупные зёрна до 3 см. Этот плагиоклаз – андезин, с полным углом погасания 25-30°. Зёрна свежие, слабоизменённые, имеют овальную форму с неровными краями. Оливин представлен идиоморфными зёрнами от 0.3 до 1.5 см, в некоторых крупнозернистых образцах до 2.5 см. Зёрна оливина свежие, слабоизменённые. Ортопироксен представлен в виде коронарных

оторочек на контакте оливина с плагиоклазом, а также в виде отдельных зёрен до 0.3 см. Размер коронарных оторочек варьирует от 0.1 до 0.2 см. Иногда встречаются двойные оторочки. В оторочках иногда отмечается актинолит. В некоторых шлифах наблюдается позднемагматический амфибол, присутствуют магнетит (до 0.2 см) и апатит.

Рис. 5.2. Распределение главных породообразующих элементов в троктолитах Тонкого мыса.

Породы троктолитового ряда Тонкого мыса по содержанию кремнезёма (SiO₂=33-47 вес. %) и щелочей (Na₂O+K₂O= 0.25-3.8 вес. %) относятся к нормальному ряду, содержания K₂O (0.04-0.38 вес. %) указывают на их принадлежность к низко-калиевой серии изверженных пород. Содержание титана низкое (TiO₂=0.32-0.61 вес. %), за исключением двух проб (TiO₂=2.04, 2.35). На графиках зависимости содержания оксидов алюминия, кремния, суммы щелочей и железа от оксида магния наблюдаются тренды корреляции (рис. 5.2). Породы массива Тонкий Мыс характеризуются высоким содержанием Al₂O₃, что соответствует троктолитовой последовательности кристаллизации, либо является особенностью исходного расплава.

5.2. Rb-Sr и Sm-Nd изотопно-геохимические исследования пород пироксениттроктолит-габбрового комплекса Тонкого мыса

Для изучения изотопных характеристик пород пироксенит-троктолит-габбрового комплекса Тонкий мыс выбраны типичные породы комплекса – троктолиты. Для изотопного изучения из нескольких десятков образцов выбраны после изучения в шлифах наиболее свежие разновидности троктолитов, шесть образцов (SB071A SB071P15A SB071P20A SB076Г SB072P9 SB072P11, точки отбора показаны на рис. 2.2, 2.3 в главе 2).

Исследование Rb-Sr и Sm-Nd изотопных систем пород показало, что начальное изотопное отношение (87 Sr/ 86 Sr)₀ близкое у всех исследованных пород и составляет 0.7030±0.0002. Модельный возраст T_{Nd} троктолитового комплекса Тонкого мыса составляет 0.82-1.37 млрд. лет. Изотопный состав неодима двух троктолитов Тонкого Мыса ($\epsilon_{Nd}(T) = +4.0...+4.9$) отличается от изотопного состава Nd четырех троктолитов (рис. 6.4) ($\epsilon_{Nd}(T) = -0.5$; -0.9). Для объяснения различий изотопных составов пород требуются дополнительные исследования.

Глава 6. Тоналит-плагиогранит-гранитная серия дайкового комплекса Кичерской зоны

6.1. Петрографический состав, петрохимия, геохимия пород тоналитплагиогранит-гранитная серии

Для изучения изотопно-геохимических характеристик пород тоналит-плагиогранитгранитной серии, рассматриваемой в разделе 2.3, выбраны следующие образцы: тоналиты SB072P17 и лейкограниты SB072P16 из грибообразного тела (рис. 2.5), и лейкограниты SB071P4 из дайки (рис. 2.3) отобраны в качестве образцов пород даек, внедрение которых происходило на завершающем этапе становления структуры. Из этих же гранитоидов (SB072P17 и SB071P4) проводилось геохронологическое исследование циркона (см. раздел 6.3). Плагиограниты SB0712Г отобраны из дайки, секущей ортоамфиболиты SB0712A и апочарнокитовые гнейсы SB0712B западной части богучанской бухты (рис. 2.6). Биотитовые граниты SB098Д и AB28 из чередования с амфиболитами взяты с южной оконечности мыса Лударь. Образцы гранитов 2962 и 2963 отобраны из жил, секущих амфиболиты у ручья Туркин, граниты пробы 2965 секут амфиболиты Курлинского массива (Сомсикова и др., 2021).

Породы тоналит-плагиогранит-гранитной серии на диаграмме зависимости суммы щелочей от кремнезёма относятся к нормальному ряду гранитоидов (гранодиоритыграниты-лейкограниты), за исключением нескольких образцов, которые попадают в поле низкощелочных гранодиоритов и умеренно-щелочных лейкогранитов (рис. 4.1).

Образцы гранитоидов SB072P16, SB0712Г и 2962 имеют порфировую структуру, состоят из лейкократовых вкрапленников до 1 см. В образце лейкогранита SB098Д наблюдаются крупные вкрапленники плагиоклаза до 2.5 см. В остальных образцах структура среднезернистая без явных вкрапленников. Темноцветных минералов в некоторых образцах не более 5 %, а в некоторых достигает 20%. Они образуют слабую минеральную полосчатость среди лейкократовых минералов. Слои темноцветных минералов состоят из пироксенов (40 %), соотношение хлоритизированных флогопита и биотита варьирует в разных образцах. Присутствует эпидот, амфибол (около 10 %). Во всех образцах наблюдаются гипидиоморфные сростки кварца и плагиоклаза. Минералы имеют неровные, раздробленные края зёрен, что говорит о вторичных изменениях пород тоналит-плагиогранит-гранитной серии. Акцессории всех гранитоидов – апатит, циркон.

Плагиогранит-порфиры дайки, типичные породы комплекса, секущей амфиболиты и западной части Богучанской бухты (обр. SB0712Г, рис. 2.6, 6.1), состоят из заключённых в микрогранитную основную массу крупных зёрен плагиоклаза и удлинённо-призматических и игольчатых кристаллов амфибола, частично замещённого эпидотом. Во внешних зонах кристаллов плагиоклаза в некоторых случаях встречаются микропегматитовые вростки кварца. Структура породы порфировая.

Рис. 6. 1. Микрофотография плагиогранитов пробы SB0712Г. А) николи скрещены, Б) николи параллельны

Тоналиты (SB072P17) и плагиограниты (SB0712Г и 2965) имеют высокое содержание $Al_2O_3=15.7-20.5$, $Na_2O=3.9-6.3$. Спектр распределения P3Э (рис. 6.2. Б) у этой группы гранитоидов гипабиссального комплекса Кичерской зоны западной части Байкало-Муйского пояса дифференцированный, характеризуется преобладанием лёгких и средних лантаноидов над тяжёлыми при величине отношения (La/Lu)_N = (13.0-14.0), при Yb_N=3.1-3.4, Eu/Eu*=1.1-1.2.

Рис. 6.2. Графики распределения редкоземельных и редких элементов для пород тоналитплагиогранит-гранитной серии Кичерской зоны Северного Прибайкалья.

Лейкограниты и граниты (дайковые тела (SB098Д, SB0710A, SB071P4 и SB072P16), а также жильные лейкограниты (2963) и гнейсовидные лейкограниты (2962) из чередования с амфиболитами, демонстрируют несколько более низкие содержания Al₂O₃ (13.5-16.7 мас. %), относительно высокие содержания Na₂O (3.3-4.3 мас. %), отличаясь большим диапазоном величины отношения K₂O/Na₂O (0.2-1.4) от тоналитов, плагиогранитов и лейкоплагиогранитов (образцы SB072P17, SB0712Г, 2965, SB0715А и 2810) (табл. 2 Приложение, рис. 6.2. А). Спектр распределения РЗЭ у лейкогранитов SB072P16 и плагиогранитов SB098Д менее дифференцированный, характеризуется преобладанием лёгких и средних лантаноидов над тяжёлыми при величине отношения $(La/Lu)_N = (3.0-7.8)$, Yb_N=2.4-3.4, Eu/Eu*=1.3-1.5. Для плагиогранитов SB071P4 и SB0710A отмечается сильнодифференцированный спектр распределения РЗЭ. характеризующийся преобладанием лёгких и средних лантаноидов над тяжёлыми при величине отношения $(La/Lu)_N = (17.7-39.4), Yb_N=5.0-5.6, Eu/Eu^*=1.0-1.3$ (табл. 2 Приложение, рис. 6.2. А) (Сомсикова и др., 2021).

По своему геологическому положению гранитоиды могут рассматриваться как интрузивные образования, внедрение которых отражает завершающий этап становления структуры складчатой зоны в обрамлении Сибирского кратона. При этом, наличие изменённых минералов в тоналитах-лейкогранитах даёт основание полагать, что метаморфические преобразования продолжились и после их внедрения.

6.2. Rb-Sr и Sm-Nd изотопно-геохимические исследования пород тоналитплагиогранит-гранитной серии

Для семи образцов пород рассматриваемого комплекса выполнены исследования Sm-Nd и Rb-Sr изотопных систем. Они характеризуются содержаниями: Rb=10-80 г/т; Sr=278-820 г/т; 87 Rb/ 86 Sr изотопные отношения варьируют от 0.0533 до 0.8731, а 87 Sr/ 86 Sr – от 0.70328 до 0.711375. Содержания Sm в этих образцах равно 0.5-9.4 г/т, Nd = 2-47 г/т. 147 Sm/ 144 Nd изотопные отношения варьируют от 0.0879 до 0.1654, 143 Nd/ 144 Nd – от 0.512406 до 0.512818.

Начальное изотопное отношение стронция $({}^{87}\text{Sr}/{}^{86}\text{Sr})_0$ в образцах пород дайкового комплекса равно 0.70322, начальное изотопное отношение неодима $({}^{143}\text{Nd}/{}^{144}\text{Nd})_0$ равно

0.512128 (показано на графике (рис. 6.3.)). Значения рассчитаны на время T= 600 млн лет. Близость начальных изотопных отношений стронция и неодима для образцов тоналитплагиогранит-гранитной серии совместно с геохимическими характеристиками подтверждают геологические данные о принадлежности различных гранитных даек к единому комплексу.

Рис. 6.3. График зависимости начального изотопного состава Nd, расчитанного на T=600 млн лет от содержания SiO₂ в породах тоналит-плагиогранит-гранитной серии.
Погрешности точек 0.1%. Линия отвечает среднему отношению (¹⁴³Nd/¹⁴⁴Nd)₀ = 0.512128.

Рис. 6.4. График зависимости ε_{Nd}(600 млн лет) от ε_{Sr}(600 млн лет) для пород тоналитплагиогранит-гранитной серии и троктолитов Тонкого мыса. Цифрами обозначены значения ε_{Nd}(600 млн лет) для каждого образца.

Модельные возрасты гранитоидов изученных образцов дайкового комплекса Кичерской зоны западной части пояса определены в диапазоне 0.66-1.00 млрд лет. Гранитоиды имеют мантийные характеристики: значения $\varepsilon_{Nd}(600 \text{ млн лет})$ находятся в диапазоне +3.2... +7.1, значения $\varepsilon_{Sr}(600 \text{ млн лет})$ находятся в диапазоне. (рис. 6. 4, табл. 3 Приложение). Отмечается, что вмещающие троктолиты Тонкого мыса (гл. 5) имеют более коровые характеристики источника вещества ($\varepsilon_{Nd}(600 \text{ млн лет}) = +4.9$), чем тоналиты ($\varepsilon_{Nd}(600 \text{ млн лет}) = +7.1$) (рис. 6.4).

6.3. Исследование U-Pb изотопной системы циркона из пород тоналитплагиогранит-гранитной серии Кичерской зоны

Для оценки возраста тоналит-плагиогранит-гранитного комплекса отобраны три пробы: из тоналитов внутренней части грибообразного тела (SB072P17), лейкогранитов (SB072P16) и (SB071P4) из даек. Эти гранитоиды прорывают породы пироксениттроктолит-габбровой серии Тонкого мыса (рис. 2.3, 2.4, 2.5).

Из пробы тоналита весом около 8 кг была выделена представительная фракция циркона (8 г), из одной пробы лейкогранита (SB072P16) такого же веса выделено менее 10 кристаллов циркона, что не является представительным материалом для геохронологической характеристики породы. Из лейкогранитов SB071P4 были выделены цирконы, достаточные для анализа методом лазерной абляции.

Циркон из пробы тоналита SB072P17 отобран из размерной фракции от 70 до 150 мкм. Зёрна светло-коричневые, сильнотрещиноватые, представлены однотипными удлинённопризматическими (игольчатыми) кристаллами с коэффициентом удлинения 1:4-1:7. В кристаллах хорошо видны грани, иногда пирамидальные вершины. Для циркона из тоналитов характерна тонкая зональность с отсутствием внутренних ядер (рис. 6.4). Целиком сохранившиеся кристаллы циркона в выделенных фракциях встречались редко.

95

Рис. 6.5. Изображения циркона из пробы тоналитов SB072P17, полученные при помощи электронного микроскопа Quanta 200 MK2: катодолюминесцентное изображение (A) и фото в режиме обратно-рассеянных электронов (Б).

Расчёт температуры кристаллизации циркона проведён для 12 зёрен образца тоналитов SB072P17 (рис. 6.6). Концентрации титана в цирконе варьируют от 7.2 до 23.7 ppm, соответствуют образованию кристаллов при температуре от 714 до 825 °C. Средняя концентрация титана 12.8 ppm соответствует температуре 761 °C. Погрешность расчётов одного значения составляет до 20 °C.

Содержание урана в цирконе колеблется от 155 до 722 ppm, тория – от 119 до 919 ppm при сохранении величины U/Th отношения около 1.

Рис. 6.6. Распределение температуры кристаллизации циркона, рассчитанной по титановому термометру для образца тоналитов SB072P17.

Рис. 6.7. Диаграмма распределения редкоземельных элементов в цирконе из тоналитов пробы SB072P17. 97

Циркон из тоналитов обр. SB072P17 характеризуется дифференцированным спектром распределения REE (рис. 6.7), характерным для циркона магматического генезиса (Hoskin, Schaltegger, 2003). Проявлены положительный максимум церия (величина Ce/Ce* лежит в интервале 65-240) и минимум европия (величина Eu/Eu* лежит в интервале 0.03-0.77) (табл. 7, Приложение). Содержание Hf от 6494 до 10331, в среднем 8088 ppm. Среднее содержание Y – 2181 ppm.

Результаты анализа U-Pb системы 42 зёрен циркона из пробы тоналитов, с учётом морфологии и особенностями внутреннего строения, указывают на время кристаллизации породы, происходившей 595 ± 5 млн лет назад (рис. 6.8).

Рис. 6.8. Диаграммы для данных по 42 точкам анализа циркона из пробы тоналита SB072P17:

 A) Диаграмма с конкордией в координатах Аренса-Везерилла. Нижнее пересечение дискордии не имеет возрастного смысла. Эллипсами показаны погрешности измерения для каждого анализа на уровне 1σ. Погрешности вычисленного значения возраста – 2σ.

Б) Диаграмма распределения возрастов по ²⁰⁶Pb/²³⁸U изотопному отношению, скорректированному на контаминацию обыкновенным свинцом. На рисунке приведено также фото типичного зерна циркона из исследованной пробы.

Циркон из пробы лейкогранитов SB071P4 отобран из размерной фракции от 70 до 250 мкм. Кристаллы от прозрачного до жёлто-коричневого цвета, преимущественно совсем прозрачные. Циркон призматической и короткопризматической формы (с К_{удл.}= 1:2-1:4) со сглаженными гранями и вершинами. На катодолюминесцентных изображениях циркона отчётливо видны границы ядер, обросшие оболочками (рис.6.9).

Рис. 6.9. Изображения циркона из пробы лейкогранитов SB071P4, полученные при помощи электронного микроскопа Quanta 200 MK2: катодолюминесцентное изображение (А) и фото в режиме обратно-рассеянных электронов (Б).

Изучение изотопных отношений урана и свинца проводилось в 42 зёрнах циркона из двух проб. В таблицах 14 и 15 (Приложение) сведены данные, полученные в результате анализа 42 зёрен циркона из дайки тоналита SB072P17 и 42 зёрен циркона из дайки лейкогранита SB071P4: изотопные отношения и значения возраста циркона. По значениям отношений 206 Pb/²³⁸U и 207 Pb/²³⁵U построены графики с конкордией Аренса-Везерилла и Тера-Вассербурга (рис. 6.10).

Рис. 6.10. Диаграммы для данных по 42 точкам анализа циркона из пробы лейкогранита SB071P4:

A) Диаграмма с конкордией в координатах Тера-Вассербурга (Tera and Wasserburg, 1972).
Б) Диаграмма с конкордией в координатах Аренса-Везерилла. Верхнее пересечение дискордии не имеет возрастного смысла. Эллипсами показаны погрешности измерения для каждого анализа на уровне 1σ. Погрешности вычисленных значений возраста – 2σ. В) Диаграмма распределения значений возрастов по ²⁰⁶Pb/²³⁸U изотопному отношению Г) Диаграмма распределения возрастов по ²⁰⁶Pb/²³⁸U изотопному отношению. На рисунке приведено также фото типичных зёрен циркона из исследованной пробы.

В результате исследования U-Pb системы 42 зёрен циркона из пробы лейкогранитов получены точки, которые лежат на линии конкордии в интервале от 590 до 620 млн. лет (рис. 6.10. А), что связано с внутренним строением исследованных кристаллов (рис. 6.9. А, 6.10. Г). Предполагается, что внутри зёрен циркона присутствуют ядра. Полученная оценка возраста кристаллизаци лейкогранитов (рис. 6.10) составляет 584 ± 48 млн лет.

Расчетные температуры кристаллизации циркона в гипабиссальной плагиогранитгранитной серии Кичерской зоны составили 714 – 825 °C, за время образования принимается возраст тоналитов, равный 595 ± 5 млн лет.

Глава 7. Обобщённая характеристика высокоградных пород, гипабиссальных гранитоидов и габброидов Кичерской зоны. Этапы

развития западной части Байкало-Муйского пояса

7.1.1. Обсуждение результатов. Изотопно-геохимическая гетерогенность гранулитового комплекса Кичерской зоны и её обоснование.

Для корректной интерпретации датируемых событий и выделения магматических и метаморфических генераций циркона изучается его внутреннее строение, характер зональности и содержания микроэлементов в нём. Концентрации U в большинстве зёрен циркона эндербитов обр. 2821 по данным метода LA-ICP-MS (до 339 ppm) выше, чем в зёрнах, измеренным методом SHRIMP (до 146 ppm) (рис. 7.1; табл. 8 и 16 Приложение). Можно предположить, что исследован циркон разных генераций. И на рис. 7.2 видно, что оценки возраста, полученные методом SHRIMP составляют 640 ± 5 млн лет. Точки анализов, полученные методом LA-ICP-MS смещены к более молодым возрастам от 630 до 610 млн лет. Эти различия полученного возраста связаны с методическими особенностями применённых методов и объёмом используемого образца циркона при анализе (Костицын и др., 2015).

Рис. 7.1. График распределения концентраций U и Th в цирконе обр. 2821. Линиями показаны разные отношения Th/U.

Глубина кратера при исследовании U-Pb изотопной системы циркона методом SHRIMP на 1-2 порядка меньше даже при одинаковых диаметрах ионного и лазерного пучков и позволяет анализировать именно первичные магматические участки циркона, выделенные по катодолюменесцентным изображениям. По причине большей глубины прожигания образца лазером, в анализируемый объём попадают части кристалла из разных зон, не видных на катодолюменесцентных изображениях поверхности. Захват разновременных зон приводит к смещению точек вдоль линии конкордии.

Результаты датирования циркона эндербитов обр. 2821 методом лазерной абляции и с помощью SHRIMP, в сочетании с интерпретацией катодолюминесценции позволяют выделить среди полученных результатов отдельные магматическое (640 ± 5 млн лет) и метаморфическое ($\sim 610 \pm 10$ млн лет) события, время образования и преобразования зёрен циркона (рис. 7.2). Получается, что условия гранулитовой фации метаморфизма отличаются по времени от амфиболитового метаморфизма максимум на 30 млн лет.

data-point error ellipses are 68.3% conf.

Рис. 7.2. Диаграмма с конкордией в координатах Тера-Вассербурга (Tera and Wasserburg, 1972) для циркона из эндербитов обр 2821 по данным, полученным методом SHRIMP и LA-ICP-MS. Серыми линиями обозначены погрешности 1σ для каждой точки анализа.

Поскольку предполагается, что чарнокитоиды и апочарнокитовые гнейсы относятся к одному комплексу, результаты измерения U-Pb изотопной системы циркона пород нанесены на одну диаграмму (рис. 7.3). Точки анализов, полученные методом LA-ICP-MS, также лежат вдоль линии конкордии в диапазоне от 640 до 610 млн лет. Но много точек "отлетают" и ложатся вдоль дискордии с верхним пересечением в точке, отвечающей составу обыкновенного свинца. В таком случае возраст чарнокитоидов богучанского гранулитового комплекса рассчитывается по нижнему пересечению дискордии с конкордией и отвечает значению 618 ± 2 млн лет.

Рис. 7.3. Диаграмма с конкордией в координатах Тера-Вассербурга (Tera and Wasserburg, 1972) для зёрен циркона из чарнокитоидов и апочарнокитовых гнейсов гранулитового богучанского комплекса

Нарушение U-Pb изотопной системы может быть следствием высоких содержаний обыкновенного свинца, которые характерны мелким включениям разных минералов, содержащихся в цирконе (например, рис. 4.14); воздействия флюидов, существующих в породе на регрессивной стадии гранулитового метаморфизма, когда циркон мог быть частично или полностью перекристаллизован (например, рис. 4.22) или перехода в состояние, близкое к аморфному, с рыхлой структурой из-зв высокого содержания урана внутри (рис. 7.4).

Рис. 7.4. График распределения концентраций U и Th в цирконе обр. чарнокитоидов 2816, эндербитов 2821 и апочарнокитовых гнейсов 2906 и SB0712B. Линиями показаны разные Th/U отношения.

Встречающийся циркон принято разделять В природе на кристаллический, полуметамиктный и метамиктный. Процесс перехода циркона в метамиктное состояние может быть обусловлен внутренними (авторадиация). Главным признаком этого перехода разрушение его кристаллической решётки минерала. Первопричиной является метамиктизации природных цирконов является α -распад актиноидов U и Th, в результате которого образуются α-частица и ядро отдачи. Степень радиационного повреждения

структуры циркона определяется поглощенной дозой ионизирующего излучения. Для цирконов в качестве меры дозы авторадиации D удобнее использовать не поглощённую дозу, а число α -распадов U и Th в единице массы вещества (расп./г).

При больших дозах авторадиации (D > 6×10^{18} расп./г) кристаллическая структура циркона нарушается и переходит в смесь аморфных и кристаллических фаз ZrSiO₄, ZrO₂ и SiO₂.

Рис. 7.5. Расчёт накопленной дозы α-распада для образцов чарнокитоидов (2821 и 2816) и апочарнокитовых гнейсов (SB0712B и 2906). Пунктирная линия отвечает накопленной дозе альфа-распадов (~1.5 × 10¹⁸ расп/г), при которой уже обнаруживается метамиктная фаза (Zhang, Salje, 2001), тогда как при ~ (6-8) × 10¹⁸ расп/г (точечная линия) циркон становится полностью метамиктным (Rios et al., 2000).

Согласно расчёту накопленной дозы α-распада (рис. 7.5) большая часть зёрен из чарнокитоидов попадает в поле полнокристаллического циркона. В пяти зёрнах чарнокитоидов обр. 2816 и почти для всех зёрен образца апочарнокитовых гнейсов 2906 отмечается появление признаков метамиктности до полной метамиктизации циркона (рис. 7.5). Таким образом, U–Pb изотопная система нарушена у этой части минералов.

На основании полученных данных, сделано предположение, что гранулитовый метаморфизм с интервалом около 30 млн лет сменяется метаморфизмом амфиболитовой

фации. Это отражается в изменении породообразующих минералов (амфиболитизация и хлоритизация пироксенов, соссюритизация плагиоклазов) и в повышенных содержаниях урана в зёрнах циркона апочарнокитовых гнейсов (до 0.5%). Поэтому 640 млн лет – время кристаллизации протолитов чарнокитоидов в условиях гранулитовой фации метаморфизма, 610 млн лет – оценка возраста, связанная с заключительной стадией метаморфизма в амфиболитовых условиях. Таким образом, точки анализов могут располагаться на короткой дискордии, проходящей совсем рядом с линией конкордии (как в случае с результатами для эндербито-гнейсов на рис. 4.26), с пересечениями в 640 и 610 млн лет.

Следует отметить, что у вторично-ионной масс-спектрометрии (SIMS) есть преимущества по качеству получаемых результатов перед лазерной абляцией (LA-ICP-MS) в случаях с полиметаморфическими сложнопостроенными зёрнами, где возрасты метаморфизмов несильно оторваны друг от друга по времени. Необходимо это принимать во внимание и использовать качественные катодолюминесцентные снимки до измерения U-Pb изотопной системы циркона, как в данной работе изначально сделано не было, что усложнило интерпретацию полученных данных.

При исследовании циркона из двух образцов эндербито-гнейсов методом LA-ICP-MS получены следующие результаты: проанализировано 84 зерна циркона пробы AB2 (рис. 4.26.А). Точки анализов расположились вдоль конкордии в диапазоне от 790 до 600 млн. лет. В пробе 2914 проанализировано 42 зерна циркона (рис. 4.26.Б) и в этом случае также все точки растянулись вдоль линии конкордии от 840 до 740 млн. лет.

Для объяснения причины широкого размаха U-Pb возраста циркона в этих породах гранулитовой фации метаморфизма Кичерской зоны Байкало-Муйского пояса можно рассмотреть несколько гипотез:

- 1. эпизодический рост циркона;
- 2. непрерывный рост зёрен циркона в ходе длительного метаморфизма;
- 3. неравномерное омоложение древнего циркона;
- 4. расположение точек на дискордии;
- 5. гетерогенный (осадочный) источник циркона.

При изучении катодолюминесцентных (CL) изображений циркона (рис. 4.24 и 4.25) не выявлено соответствия между полученными значениями возраста и положением точки анализа в структуре кристалла, и не обнаружены явные признаки нескольких этапов роста (1).

Предположение о пребывании ассоциации пород в условиях гранулитовой фации метаморфизма (2) на протяжении 240 млн. лет маловероятно, поскольку геологическая история этой ассоциации связана с развитием подвижного пояса.

Древний модельный возраст породы (2.3 млрд лет) не противоречит предположению (3) о том, что циркон мог быть омоложен, однако полная потеря радиогенного свинца всеми зёрнами циркона возможна при переходе циркона в метамиктное состояние. Расчёт накопленной дозы α-распада (рис. 7.6) при измеренных концентрациях урана и тория показал, что циркон не мог стать метамиктным за время от 2.3 млрд лет до 800-600 млн лет. Таким образом, полная потеря радиогенного свинца маловероятна.

Рис. 7.6. Расчёт накопленной дозы α-распада для образцов эндербито-гнейсов (2914 и AB2). Пунктирная линия отвечает накопленной дозе альфа-распадов (~1.5 × 10¹⁸ расп/г), при которой уже обнаруживается метамиктная фаза (Zhang, Salje, 2001), тогда как при ~(6-8) × 10¹⁸ расп/г (точечная линия) циркон становится полностью метамиктным (Rios et al., 2000). Циркон с разными оценками U-Pb возраста попадает в поле полнокристаллического циркона.

Следует отметить, что на рассматриваемом отрезке конкордия и дискордия неразличимы с учётом имеющихся аналитических погрешностей и, в действительности, точки могут
располагаться вдоль коротких дискордий. В этом случае величины СКВО для проб AB2 и 2914 равны 1.9 и 0.79 соответственно. На рис. 7.7 представлены результаты исследования U-Pb системы циркона из обеих проб эндербитов. Проведена общая линия дискордии, верхнее пересечение которой отвечает возрасту около 840 млн лет, нижнее – около 600 млн лет.

Рис. 7.7. График с конкордией в координатах Аренса-Везерилла для эндербитов 2914 (чёрные эллипсы) и AB2 (красные эллипсы). Оранжевой линией показана возможная линия дискордии, проходящая близко к линии конкордии.

Признаков осадочной природы протолита эндербитов в геологическом строении ассоциации не обнаружено. Поэтому детритовое (5) происхождение циркона с разновозрастными источниками в диапазоне 840-600 млн. лет также маловероятно.

Таким образом, несмотря на неоднозначность полученных геохронологических данных, сделан вывод о том, что ранняя генерация циркона в эндербито-гнейсах Северного Прибайкалья образовалась около 840 млн. лет назад, а поздняя – около 610 млн. лет назад (магистерская работа, 2012). Точки аппроксимируются линией дискордии с удовлетворительным значением СКВО.

Позднее цирконы из эндербитов 2914 и AB2 были изучены методом SHRIMP. Перед анализом получены качественные катодолюминесцентные снимки циркона, благодаря которым удалось выявить, что среди циркона из эндербито-гнейсов 2914 выделяются длиннопризматические магматические зёрна и кристаллы, имеющие обрастания метаморфической оболочкой.

В нескольких кристаллах отчётливо видно заполнение трещин таким же цирконом, как в оболочках (рис. 4.27. Б., 4.28). Как и в работе Rimša et al. (2007) можно сделать вывод, что светлые зоны циркона, образовались по трещинам в то же время, что и оболочки. А поскольку предполагается, что оболочки метаморфического происхождения, то заполнение трещин происходило во время высокоградного метаморфизма (Kröner et al., 2015). А. Римса и соавторы (2007) считают, что гидроразрыв это наиболее вероятный механизм их трещиноватых зерен циркона и предположили, что трещины заполнила жидкость, перенасыщенная Zr (возможно, магма).

Встречается также третий тип циркона – это овальные, округлые, часто многогранные зёрна (рис. 4.27. В). Большая часть циркона имеют нечёткую осцилляторную зональность, и, скорее всего, приобрели свою форму в процессе резорбции. Таким образом, кристаллы магматического происхождения, но по морфологии напоминают метаморфические зёрна.

Циркон из пробы эндербито-гнейсов AB2 длиннопризматический с округлыми вершинами и полосчатой зональностью (рис. 4.29. Б). Есть также зёрна с довольно гомогенной катодолюминесценцией или со светло-серыми и серыми пятнами. Немногие зёрна имеют осцилляторную зональность и тонкие метаморфические оболочки. Также встречаются округлые многогранные цирконы со слабой секторальной зональностью (рис. 4.29. А). Условия образования таких зёрен относят к фации высокоградного метаморфизма.

В одной и той же пробе гранулитов часто присутствуют как изометричные, так и идиоморфные удлиненные кристаллы циркона. Изометричная форма связывалась с кристаллизацией в условиях большого давления, высокой температуры и пространственной стеснённости (Краснобаев, 1986 и др.). В породах гранулитовой фации умеренных и низких давлений кристаллизуются идиоморфные удлиненные зерна циркона (Тугаринов, Бибикова, 1980, Каулина, 2010).

Эти катодолюминесцентные изображения позволили понять, почему не была найдена зависимость между внутренним строением кристаллов и полученными значениями

возраста методом LA-ICP-MS. Цирконы из пробы эндербито-гнейсов 2914 кроме оболочек содержат трещины, заполненные позднеобразованным цирконом.

Результаты анализа шести магматических зёрен циркона из пробы эндербито-гнейсов 2914 и пяти магматических зёрен циркона пробы эндербито-гнейсов AB2 на SHRIMP II дают конкордантный возраст 826 ± 8 млн лет (рис. 4.30, 4.31. A). Четыре других точки в обеих пробах обладают более поздним возрастом, и с учётом ошибки, можно предположить, что они конкордантны. Четыре анализа высоколюминесцентных и низкоурановых (U = 15-39 ppm, рис. 4.30) метаморфических оболочек обр. 2914 и три низкоурановые метаморфические оболочки с конкордантным возрастом 640 ± 10 млн лет показывают возрасты 640 ± 7 и 640 ± 10 млн лет соответственно. Это интерпретируется как время роста циркона в период высокоградного метаморфизма. Низкие содержания урана в этом цирконе свидетельствуют о "сухих" условиях плавления пород. Четыре значения возраста между 826 млн лет и временем образования метаморфических оболочек обр. 2914 и три значения обр. AB2 отражают потерю радиогенного Pb или представляют собой перекристаллизованный материал. Результаты изучения U-Pb изотопной системы семи круглых зёрен метаморфического циркона обр. эндербито-гнейсов AB2 показывают конкордантные возраста 640 ± 4 млн лет (рис. 4.31. Б).

Возможно, что эти результаты лежат на линии дискордии, проходящей близко к линии и конкордии, как и предполагалось по данным, полученным в результате анализа циркона методом LA-ICP-MS.

Полученные новые данные о внутреннем строении циркона эндербито-гнейсов и двух оценках возраста образования и преобразования циркона методом SHRIMP результаты изучения U-Pb изотопной системы методом LA-ICP-MS разделены по концентрациям U и Th (рис. 7.8). Ранее попытка выделить группы одинаковых значений возраста по форме зёрен циркона или нахождением точки в центре кристалла или на краю итогов не дала.

В пробе циркона эндербито-гнейсов 2914 три неконкордантные точки содержат мало урана (U до 50 ppm), остальные точки находятся вдоль линии дискордии от ~720 до 830 млн лет (U до 350 ppm) и, видимо, отражают измерение цирконовой смеси двух возрастов (рис. 7.8. А и 7.9. А). То же самое наблюдается для циркона эндербитов AB2 независимо от содержаний урана (рис. 7.8. Б и 7.9. Б): точки лежат на конкордии от ~610 до 830 млн лет.

Таким образом, первоначальная интерпретация о полученных дискордиях по результатам изучения U-Pb изотопной системы циркона эндербито-гнейсов методом

лазерной абляции оказалась верна, но подтвердить это оказалось возможным лишь благодаря данным SHRIMP.

Рис. 7.8. Графики зависимости содержаний урана от тория для циркона из эндербитогнейсов 2914 и AB2, измеренные методом LA-ICP-MS и SHRIMP.

Рис. 7.9. Диаграммы с конкордией в координатах Аренса-Везерилла для циркона эндербито-гнейсов 2914 (А) и АВ2 (Б). Выделены точки анализов в зависимости от содержания урана в зёрнах циркона. Эллипсами изображены погрешности измерения для каждого анализа на уровне 1σ.

Рис. 7.10. Диаграмма с конкордией в координатах Аренса-Везерилла для циркона эндербито-гнейсов AB2 и 2914. Эллипсами изображены погрешности измерения для каждого анализа на уровне 1σ.

На рис. 7.10 объеденены результаты измерения U-Pb изотопной системы методами LA-ICP-MS и SHRIMP. Полученные данные позволяют сделать вывод о том, что протолит эндербито-гнейсов кристаллизовался около $830 (826 \pm 8)$ млн лет назад, а около 640 ± 10 млн лет назад породы испытали метаморфизм в условиях гранулитовой фации, во время которого образовывались метаморфические оболочки и новые кристаллы. По результатам измерения циркона методом лазерной абляции можно заключить, что некоторые зёрна содержат информацию о более позних наложенных изменениях в условиях амфиболитовой фации метаморфизма вплоть до 610 млн лет.

Существует закономерная связь между модельным Sm-Nd возрастом источника и диапазоном значений U-Pb возраста акцессорных цирконов. Эндербито-гнейсы с гетерогенными цирконами с возрастом от 830 до 640 (610) млн лет показывают древний модельный возраст (2.3-2.2 млрд лет), чарнокитоиды и апочарнокитовые гнейсы с узким диапазоном значения возраста по циркону от 640 до 610 млн лет показывают более молодой модельный возраст (1.3-1.1 млрд лет).

<u>1 защищаемое положение:</u>

В составе богучанского гранулитового комплекса западной части Байкало-Муйского пояса присутствуют породы двух типов: эндербито-гнейсы и чарнокитоиды, с акцессорными циркона внутреннего строения. Протолит эндербито-гнейсов зёрнами разного кристаллизовался 826 ± 8 млн лет назад, затем – 640 ± 10 млн лет назад породы испытали метаморфизм в условиях гранулитовой фации. Одновременно с этим метаморфизмом образовались чарнокитоиды. (640 млн лет) Породы богучанского гранулитового комплекса, согласно полученным U-Pb изотопным данным по зёрнам циркона, испытали ретроградные метаморфические преобразования амфиболитовой фации в интервале 630 - 600 млн лет назад.

Породы двух типов, выявленные в составе богучанского гранулитового комплекса западной части Байкало-Муйского пояса, испытали общий метаморфизм не позднее 610 млн лет назад. Эти породы различаются по геохимическим и изотопным характеристикам Sr и Nd, и внутреннему строению акцессорного циркона.

Протолиты двупироксеновых и ортопироксеновых гнейсов (модельный возраст 2.3-2.2 млрд лет) были образованы из обогащённого материала, преимущественно раннедокембрийской коры ($\varepsilon_{Nd}(0.8 \text{ млрд лет}) = -9.6... -8$, $\varepsilon_{Sr}(0.8 \text{ млрд лет}) = +34.2...+45.5$)),

чарнокитоиды характеризуются позднемезопротерозойским Nd-модельным возрастом $(T_{Nd2}) = 1.3-1.1$ млрд лет) и значениями $\varepsilon_{Nd}(600$ млн лет) = +0.7...+3.0, ε Sr(600 млн лет) = -6.9...-22.4).

<u>2 защищаемое положение:</u>

Установлена гетерогенность протолитов пород богучанского гранулитового комплекса. Протолиты двупироксеновых и ортопироксеновых эндербито-гнейсов (модельный возраст $T_{Nd2} = 2.3 - 2.2$ млрд лет) были образованы из обогащённого материала, преимущественно раннедокембрийской коры ($\varepsilon_{Nd}(0.8 \text{ млрд лет}) = -9.6...-8.0$, $\varepsilon_{Sr}(0.8 \text{ млрд лет}) = +34...+46$)). Чарнокитоиды характеризуются позднемезопротерозойским Nd-модельным возрастом ($T_{Nd2} = 1.3 - 1.1$ млрд лет) и значениями $\varepsilon_{Nd}(0.6 \text{ млрд лет}) = +0.7...+3.0$, $\varepsilon_{Sr}(0.6 \text{ млрд лет}) = -22...+4$).

7.1.2. Сравнение гранулитового комплекса Кичерской зоны с Северобайкальским поясом

Гранулитовый комплекс запада Байкало-Муйского пояса – гетерогенный в геохимическом и изотопном отношении, состоящий из совместно деформированных пород, часть из которых характеризуется раннепротерозойским возрастом протолита, а часть – позднепротерозойским. В связи с этим возникает вопрос о сходстве или различии изотопных характеристик изученных эндербито-гнейсов и пород Северо-Байкальского пояса края Сибирской платформы (Донская и др., 2008, 2013). Гранитоиды чуйского и кутимского комплексов распространены в пределах северной части Байкальского краевого выступа Сибирского кратона (Донская и др., 2013). Гранитоиды чуйского комплекса по составу соответствуют известковым и известково-щелочным перглинозёмистым трондьемитам и имеют возраст 2020 ± 12 млн лет, а граниты кутимского комплекса известково-щелочным и щелочно-известковым перглинозёмистым гранитам с возрастом 2019 ± 16 млн лет. Породы обоих комплексов характеризуются положительными значениями $\varepsilon_{Nd}(T) = +1.9...+3.5$, которые свидетельствуют о формировании исследованных пород за счет источников с короткой коровой предысторией. Возраст протолита гранитоидов Чуйского и Кутимского комплексов Байкальского краевого выступа фундамента Сибирского кратона и возраст протолита эндербитов частично перекрывается (рис. 7.11).

Рис. 7.11. Линии эволюции изотопного состава Nd проанализированных образцов эндербито-гнейсов и диапазон реальных возрастов образцов, изученных U-Pb методом. Сплошными бордовыми линиями показаны линии эволюции изотопного состава Nd эндербито-гнейсов гранулитового комплекса. Серым пунктиром показаны линии эволюции Nd гранитоидов Чуйского и Кутимского комплексов Байкальского краевого выступа фундамента Сибирского кратона (Донская и др., 2013). Светло-серым цветом показаны линии эволюции Nd вулканитов кислого состава Северо-Байкалького вулканоплутонического пояса, Сибирский кратон (Донская и др., 2008). показано T=0.83-

0.61 млрд лет – время кристаллизации циркона пород с протерозойским модельным возрастом.

7.2. Неоднородность тоналит-плагиогранит-гранитной серии Кичерской зоны

Гипабиссальный комплекс тоналитов-плагиогранитов Кичерской зоны западной ветви Байкало-Муйского пояса (рис. 2.1) изучался на примере наиболее обнажённой её части, междуречья Слюдянка – Рель. Этот комплекс подробно описан в работе (Федотова и др., 2014). Гранитоиды слагают серию даек и морфологически разнообразных жильных тел, секущих метаморфические породы гранулитовой фации в северо-западной части Богучанской губы, чередование амфиболитов и плагиогнейсов в районе ручья Туркин, а также габброиды массива Курлинский, троктолиты и габбро расслоенного комплекса Тонкого мыса.

Тоналиты (SB072P17), плагиограниты (SB0712Г и 2965) и лейкоплагиограниты (SB0715А и 2810) имеют высокие содержания $Al_2O_3=15.7-20.5$, $Na_2O=3.9-6.3$ (табл.2 Приложение). По следующим особенностям: Sr = 398-582 мкг/г, Y = 4.3-4.4 мкг/г, Sr/Y = 91-136 тоналиты (SB072P17), плагиограниты (SB0712Г и 2965) дайкового комплекса соответствуют гранитоидам с геохимическими характеристиками адакитов (Drummond, Defant, 1990; Castillo, 2006) (табл. 7.1).

Лейкограниты и граниты, относящиеся к тому же комплексу, согласно геологическим данным (Федотова и др., 2014) (дайковые тела (SB098Д, SB0710A, SB071P4 и SB072P16), а также жильные лейкограниты (2963) и гнейсовидные лейкограниты (2962) из чередования с амфиболитами, демонстрируют несколько более низкие содержания Al_2O_3 (13.5-16.7 мас. %), относительно высокие содержания Na_2O (3.3-4.3 мас. %), отличаясь большим диапазоном величины отношения K_2O/Na_2O (0.2-1.4) от тоналитов, плагиогранитов и лейкоплагиогранитов (образцы SB072P17, SB0712Г, 2965, SB0715A и 2810) (табл.2 Приложение). В породах более низкое содержание Sr, но отношение Sr/Y довольно высокое (39-53).

Вариации изотопного состава Nd плагиогранитов Кичерской зоны согласуются с предположением о гетерогенности источника гранитоидных магм, отвечающего преимущественно неопротерозойской коре. Неоднородность протолита подтверждают значения ¹⁴⁷Sm/¹⁴⁴Nd, лежащие в широком диапазоне: от 0.0879 до 0.1654 (табл. 3 Приложение), а также состав пород рассматриваемой серии гранитоидов,

варьирующий от тоналитов до лейкогранитов, и отмечавшиеся выше индикаторные содержания элементов-примесей и их вариации (табл.2 Приложение, рис. 6.2).

Таблица 7.1. Геохимические характеристики адакитов по (Defant, Drummond, 1990) и данные для тоналитов и плагиогранитов гипабиссального комплекса Кичерской зоны

	Геохимические характеристики адакитов (Defant and Drummond, 1990)	Тоналиты, плагиограниты Кичерской зоны западной части Байкало-Муйского пояса
SiO ₂	> 56 Bec. %	65-68
Al ₂ O ₃	≥ 15 вес. %	15.7-16.9
MgO	< 3 Bec. %	1.69-2.55
Sr	> 400 ppm	398-582
Y	< 18 ppm	4.28-4.36
Yb	< 1.9 ppm	0.40-0.42
⁸⁷ Sr/ ⁸⁶ Sr	обычно < 0.7040	0.7033-0.7034

Модельные возрасты T_{Nd} тоналитов (образец SB072P17) и плагиогранитов (образцы SB0712Г и 2965) адакитовой группы составляют 0.66 – 0.86 млрд лет. Значения $\varepsilon_{Nd}(T)$ этих образцов равны +4.7...+7.1. Значения модельного возраста для проб гранитов (образец SB098Д) и лейкогранитов (образцы SB072P16, 2962 и 2963) неадакитовой группы составляют 0.67 – 1.00 млрд лет. Значения $\varepsilon_{Nd}(T)$ для этих пород равны +3.2...+6.7.

<u>З защищаемое положение:</u>

Тоналиты-плагиограниты-лейкограниты юго-запада Кичерской зоны Байкало-Муйского пояса образуют самостоятельный гипабиссальный комплекс. В его составе присутствуют соответствующие адакитам породы с фракционированным спектром РЗЭ, низкими содержаниями тяжёлых РЗЭ, Y, высокими концентрациями Sr, $\varepsilon_{Nd}(T) = +4.7...+7.0$; $\varepsilon_{Sr}(T) = -17...-23$). Sm-Nd изотопно-геохимические характеристики пород комплекса ($\varepsilon_{Nd}(T) = +3.2...+7.1$) указывают на разнородный состав неопротерозойской коры островодужного или океанического типа.

Результаты анализа U-Pb системы 42 зёрен циркона из пробы тоналитов SB072P17 указывают на время кристаллизации породы, происходившей 595 ± 5 млн лет назад (рис. 6.8). При исследовании U-Pb изотопной системы 42 зёрен циркона из пробы лейкогранитов SB071P4 получены точки, которые ложатся на линию конкордии и дают спектр возрастов

от 590 до 620 млн лет, что связано с внутренним строением исследованных кристаллов. Предполагается, что в части циркона из лейкогранитов присутствуют ядра. Полученная оценка возраста (рис. 6.10) составляет 584 ± 48 млн лет. За время заключительного этапа развития Байкало-Муйского пояса принимается возраст тоналитов, равный 595 ± 5 млн. лет.

4 защищаемое положение:

Время кристаллизации гранитоидов гипабиссального комплекса Кичерской зоны оценивается в 595±5 млн лет согласно данным U-Pb изотопного исследования кристаллов циркона. Не позднее этого времени богучанский гранулитовый комплекс Кичерской зоны был выведен в верхние горизонты коры Байкало-Муйского складчатого пояса.

Образование гранитоидов с адакитовыми характеристиками может происходить в субдукционных условиях при плавлении погружающейся литосферной плиты. Однако не было достаточных оснований исключать второй возможный механизм образования изученных адакитов – плавление мафитового материала в условиях нижней коры.

На рис. 7.12 видно, что адакиты распространены вдоль границ столкновения литосферных плит.

Таким образом, в западной части Байкало-Муйского пояса, в междуречье Слюдянка – Рель (рис. 3.1) охарактеризован гипабиссальный тоналит-плагиогранит-гранитный комплекс, ранее не выделявшийся. В состав комплекса входят гранитоиды с адакитовыми характеристиками, а также лейкограниты, адакитовым характеристикам не отвечающие.

7.3. Перидотит-габбровые плутоны Кичерской зоны.

В западной ветви Байкало-Муйского пояса выделен чая-нюрундуканский комплекс ультрамафит-мафитов (Конников, 1986), плутоны которого прорывают метаморфические толщи юго-западной части Кичерской зоны. В состав комплекса входят Чайский, Гасан-Дякитский, Нюрундуканский, Курлинский и Слюдинский массивы.

Массив Тонкий мыс сначала рассматривался как часть Слюдинского массива (Конников, 1986), однако в последующих работах в состав чая-нюрундуканского комплекса не включался (Цыганков, 2005). Для проверки гипотезы об их связи мы провели сравнение полученных изотопных Sm-Nd данных для массива Тонкий мыс с опубликованными результатами для типоморфного Чайского массива (Amelin et al., 1997).

Расчитанный Sm-Nd модельный возраст троктолитов Тонкий мыс по измеренным образцам составляет 0.82-1.29 млрд лет ($\epsilon_{Nd}(T) = -0.5...+4.9$). Возраст комплекса Тонкий мыс, полученный по минеральной Sm-Nd изохроне равен 585 ± 22 млн лет (Макрыгина и др., 1993). Модельный возраст образцов ультрамафит-мафитовых пород Чайского массива составляет 0.8-2.3 млрд лет ($\epsilon_{Nd}(T) = +2.6...+7.0$), возраст кристаллизации составляет 627 ± 25 млн лет (Amelin et al., 1997).

На графике зависимости ¹⁴³Nd/¹⁴⁴Nd от ¹⁴⁷Sm/¹⁴⁴Nd (рис. 7. 13. A) для пород Тонкого мыса и Чайского массива наблюдается единый тренд, который может рассматриваться как отражение процесса смешения мантийного компонента с обогащённым. Обогащённый компонент может быть корового происхождения (гранитоидный, метаосадочный...), либо литосферного происхождения (базитовый). Если гипотетический коровый компонент был представлен (рис.7. 13. Б) веществом типа кристаллического сланца (ε_{Nd} не меньше –4, а Sm/Nd не ниже 0.05, C_{Nd} =16 ppm (Тейлор, Мак-Леннан, 1988), тогда из масс-балансовых расчётов получается, что доля корового вещества в изученных образцах троктолитов Тонкого мыса и ультрамафит-мафитах Чайского массива составляет от 2 до 42%. В случае смешения следует ожидать корреляции между изотопным отношением Nd и содержанием SiO₂, что не отвечает исходным данным (рис. 7. 14).

Рис. 7.13. А) График зависимости ¹⁴³Nd/¹⁴⁴Nd от ¹⁴⁷Sm/¹⁴⁴Nd для троктолитов Тонкого мыса и ультрамафит-мафитовых пород Чайского массива. Б) График зависимости $\varepsilon_{Nd}(T)$ от Sm/Nd. T=600 млн лет. Схематически изображено смешение мантийного (М) и обогащённого (С) компонентов.

Рис. 7. 14. График зависимости ¹⁴³Nd/¹⁴⁴Nd от содержания SiO₂ для троктолитов Тонкого мыса и ультрамафит-мафитовых пород Чайского массива.

При исследовании расслоенной серии пород Довыренского массива Олокитской зоны показано, что обогащённым компонентом в источнике могли быть ранее образованные породы мафитового состава, пребывавшие в литосферной обстановке в течение 2 млрд лет (Арискин и др., 2015). В габбро Sm/Nd отношение ниже, чем в мантийном перидотите, и часто не отличается от среднекорового значения. Применительно к троктолитам Тонкого мыса и породам основного состава Чайского массива подобная модель может выглядеть следующим образом. Обогащённый компонент мафитового состава в источнике мог образоваться за 300-600 млн лет до их формирования. Присутствие в источнике как

мантийного компонента, так и древнего мафитового, в разных пропорциях, может объяснить наблюдаемый тренд.

В результате плавления гетерогенного источника образовались породы с разной долей литосферного/нижнекорового (?) мафитового компонента. Если предложенная модель образования гетерогенных пород верна, то это подразумевает общность формирования ультрамафит-мафитовых пород Чайского массива и Тонкого мыса. В таком случае их можно отнести к единому, чая-нюрундуканскому комплексу.

7.4. Этапы гранитодного магматизма Кичерской зоны Байкало-Муйского складчатого пояса в поздненеопротерозойское время

Для западной части Байкало-Муйского пояса показано (рис. 7.15), что плагиограниты серии пластовых и субпластовых тел с возрастом 658-550 млн лет (Неймарк и др., 1995) деформированы вместе с амфиболитами нюрундуканской толщи. Для амфиболитов этой толщи Sm-Nd изохронным методом было получено значение мезо- неопротерозойского (1035±92) возраста, исходные данные не опубликованы, в дальнейшем эта датировка не подтверждена (Рыцк и др., 2007а). Гранулитовый метаморфизм основных пород, относящихся к нюрундуканской толще, проявился не ранее, чем 640±5 млн лет назад. Выделена толща амфиболовых диорито-гнейсов нюрундуканского метаморфического комплекса в "Гасан-Дякитской пластине" Кичерской зоны (Рыцк и др., 2017) с оценкой возрастом 640±8 млн лет. Амфиболовые диорито-гнейсы имеют є_{Nd}(T) от +4.5 до +5.9 и T_{Nd} около 1 млрд лет и, видимо, являются аналогом чарнокитодов Богучанского гранулитового комплекса. Гранулиты Северного Прибайкалья с возрастом 640±5 – 617±5 млн лет (Kröner et al., 2015, Амелин и др., 2000) были выведены в верхние горизонты литосферы ко времени 595±5 млн лет назад. Вывод сделан на основании времени кристаллизации магматического циркона из жильных и дайковых тел гранитоидов с геохимическими характеристиками адакитов (Федотова и др., 2014). Гранитоиды данного гипабиссального комплекса имеют секущие соотношения с гранулитами, троктолитами и габбро пироксенит-троктолитгаббрового комплекса Тонкого мыса (рис. 7.15). Возраст расслоенного комплекса этого массива по Sm-Nd минеральной изохроне составляет 585±22 млн лет (Макрыгина и др., 1993). Модельный возраст T_{Nd} троктолитов комплекса Тонкого мыса – 0.82-1.29 млрд лет (є_{Nd}(T) = -0.5...+4.9) (Орлова и др., 2015).

Рис. 7.15. Схематическое изображение взаимоотношений вещественных комплексов западной части Байкало-Муйского вулканического пояса; цвет соответствует значениям $\varepsilon_{Nd}(T)$ от +8 (гнейсовидные плагиограниты), до –8 (эндербито-гнейсы), T = 600 млн лет

(Сомсикова и др., 2021 с изменениями).

1 – преимущественно базальтовые породы нюрундуканской толщи > 640 млн лет и амфиболиты/гранулиты по ним, 618 ± 5 – эндербиты, 640 ± 5 – двупироксеновые гнейсы, (Амелин и др., 2000; Kröner et al., 2015); 2 – осадочные толщи, моласса (Станевич, 2007); 3 – ультрамафит-мафитовые породы; 4 - гнейсовидные плагиограниты в поле развития нюрундуканской толщи, 658-550 млн лет – муйские граниты (Неймарк и др., 1995); 5 – пироксенит-троктолит-габбровый комплекс Тонкий мыс, 585 ± 22 млн лет – троктолиты (Макрыгина и др., 1993); 6 – гранитоиды с геохимическими характеристиками адакитов и плагиомигматиты сходного состава (Конников и др., 1994б, 1999), 595 ± 5 млн лет – тоналиты (Федотова и др., 2014).

Е.Ю. Рыцком и соавторами (Рыцк и др., 2007) отмечается, что близость возраста образования эклогитов восточной ветви пояса и гранулитов западной ветви указывает на сопряженность процессов высокоградного метаморфизма в Байкало-Муйском поясе.

Формирование тоналит-плагиогранит-гранитной серии ($\epsilon_{Nd}(T) =+3.2...+7.1$) пород гипабиссального комплекса Кичерской зоны востока Байкало-Муйского пояса, произошло, судя по геохимическим характеристикам, вследствие частичного плавления ювенильной неопротерозойской коры островодужного или океанического типа. Изотопный состав Nd показывает, что кора, испытавшая частичное плавление ко времени 595±5 млн лет назад, имела некоторую изотопную и вещественную гетерогенность.

Накопление молассы холоднинской свиты и её аналогов в восточной части пояса в поздненеопротерозойское время (Салоп, 1964; Станевич и др., 2007 и др.) маркирует затухание магматической активности неопротерозойского этапа развития Байкало-Муйского пояса.

Заключение

В результате комплексного геологического, геохронологического и изотопногеохимического исследований гранитоидов, габброидов и метаморфических пород Кичерской зоны запада Байкало-Муйского складчатого пояса сформулированы основные выводы:

- Обоснована последовательность этапов формирования структуры Кичерской зоны Байкало-Муйского пояса. К концу поздненепротерозойского времени сформирована гетерогенная структура, сложенная основными гранулитами, эндербито-гнейсами, чарнокитоидами, кристаллическими сланцами и гнейсами, на которую наложен метаморфизм не позднее 607 ± 3 млн лет млн лет назад, происходивший с ~640 млн. лет в условиях от гранулитовой до амфиболитовой фации низких давлений (700 900°С и ≤ 5 7 кбар для гранулитов).
- В составе гранулитового комплекса изучены две группы: эндербито-гнейсы, протолит которых, по изотопным данным, образован за счёт древнего корового источника, и чарнокитоиды и апочарнокитовые гнейсы, обнаруживающие значительно меньшую примесь корового материала. Эндербито-гнейсы имеют высокий уровень спектра и слабофракционированное ($3.5 < La_N/Yb_N < 6.8$) распределение РЗЭ. Акцессорные цирконы из двух изученных проб эндербитов методом LA-ICP-MS содержат ядра с возрастами в диапазоне 780 830 млн лет, оболочки кристаллов образовались не позднее 610 млн лет назад. Измерение циркона из этих же двух проб на SHRIMP II указывает на два конечных члена магматического события 826 ± 8 млн лет назад и метаморфизма предположительно 640 ± 10 млн лет назад. Результаты измерения возраста кристаллов циркона, попадающие в интервал между (640 600 млн лет) не имеют прямого поэтому геологического смысла, но указывают на диапазон времени перекристаллизации циркона в условиях метаморфизма регрессивной стадии. Эндербито-гнейсы характеризуются палеопротерозойским Nd модельным возрастом ($T_{Nd2} = 2.3 2.2$ млрд лет) и отрицательными значениями $\epsilon_{Nd}(0.6) = -8.6...-9.6$.
- Чарнокитоиды и апочарнокитовые гнейсы гранулитового богучанского комплекса показывают умеренно и сильнофракционированное (6.5 < La_N/Yb_N < 35.9) распределение РЗЭ с отрицательной, либо положительной аномалией Eu. Значения U-Pb изотопных возрастов этих зёрен циркона лежат в диапазоне от 640 до 610 млн лет.

Циркон в чарнокитоидах кристаллизовался при температуре от 702 до 813 °C. Чарнокитоиды характеризуются неопротерозойским Nd-модельным возрастом $((T_{Nd2}) = 1.3 - 1.1 \text{ млрд лет})$ и положительными значениями $\varepsilon_{Nd}(0.6 \text{ млрд лет}) = +0.7...+3.0.$

- Выявлена закономерная связь между значением модельного возраста и диапазоном значений возраста акцессорного циркона гранулитов. Эндербито-гнейсы с гетерогенными зёрнами циркона с возрастом от 840 до 610 млн лет показывают древний модельный возраст (2.3 – 2.2 млрд лет), чарнокитоиды с узким диапазоном значения возраста по циркону от 640 до 607 млн лет показывают более молодой модельный возраст (1.3 – 1.1 млрд лет).
- Образцы, отобранные внутри выделявшегося предшественниками «Байкальского массива» по петрографическим, геохимическим, изотопно-геохимическим и геохронологическим характеристикам не отличаются от пород гранулитового комплекса вне картируемого массива (Макрыгина и др., 1993).
- В междуречье Слюдянка Рель охарактеризован гипабиссальный тоналитплагиогранит-лейкогранитный комплекс, ранее не выделявшийся в качестве самостоятельного. В состав комплекса входят гранитоиды с адакитовыми характеристиками, а также лейкограниты и граниты, таковым не отвечающие.
- Время образования комплекса оценивается в 595 ± 5 млн лет и интерпретируется как заключительный этап развития в неопротерозое. Значения Nd модельного возраста 0.66 – 1.00 млрд лет. Формирование комплекса интерпретируется как маркирующее заключительный этап магматизма, связанного с формированием коры Кичерской зоны Байкало-Муйского пояса.
- Результаты полученных мультиэлементных диаграмм, графиков распределения редкоземельных элементов и проведённого исследования Sm-Nd и Rb-Sr изотопных систем показывают, что возраст тоналит-плагиогранит-гранитного комплекса не может распространяться на возраст габбровых массивов.
- Sm-Nd изотопно-геохимические данные, полученные по наименее изменённым разновидностям троктолитов дунит-троктолит-габбровой серии массива Тонкий мыс, согласуются с заключением о принадлежности этих пород к чая-нюрундуканскому ультрамафит-мафитовому комплексу.

- Образование гранитоидов с адакитовыми характеристиками может объясняться существованием субдукционных условий и явлениями плавления погружающейся литосферной плиты во время формирования комплекса. Однако нет и достаточных оснований исключать возможность возникновения в это время условий, отвечающих второму возможному механизму образования адакитов плавлению мафитового материала в условиях нижней коры. Не исключено, что возможен смешанный механизм формирования распространёенных в Северном Прибайкалье пород с адакитовыми характеристиками.
- Время формирования и оценка Sm-Nd изотопных данных для гранитоидов Кичерской зоны западной части Байкало-Муйского пояса (є_{Nd}(0.6 млрд лет) =+3.2 ...+7.1, возраст кристаллизации 595 ± 5 млн лет), и для риолитов и гранит-порфиров падринской серии (є_{Nd}(0.6 млрд лет) = +4.7...+5.4, возраст кристаллизации 590 ± 5 млн лет (Рыцк и др., 2004)) дают основание предполагать, что породы имеют общее происхождение, и что риолиты падринской серии Каралон-Мамаканской зоны восточной части Байкало-Муйского пояса могут являться эффузивными аналогами гранитоидов гипабиссального комплекса Кичерской зоны западной части Байкало-Муйского пояса.

Литература

1. Азимов П.Я., Разумовский А.А., Орлова А.В., Хаин Е.В., Федотова А.А. Метаморфизм и деформации пород западной части Байкало-Муйского пояса (Северное Прибайкалье): связь с этапами развития окраинно-континентальной области // Тектоника современных и древних океанов и их окраин. Материалы XLIX Тектонического совещания, посвящённого 100-летию акад. Ю.М. Пущаровского. Москва: 2017. Т. 1. С. 6 – 10.

 Амелин Ю.В., Рыцк Е.Ю., Крымский Р.Ш., Неймарк Л.А., Скублов С.Г. Вендский возраст эндербитов гранулитового комплекса Байкало-Муйского офиолитового пояса (Северное Прибайкалье): U-Pb и Sm-Nd-изотопные свидетельства // ДАН. 2000. Т. 370. № 5. С. 652 – 654.

3. Андреев А.А., Рыцк Е.Ю., Великославинский С.Д., Котов А.Б. и др. Геодинамические обстановки формирования амфиболитов Кичерской зоны Байкало-Муйского складчатого пояса по результатам геохимических исследований // ДАН. 2015. Т 460. № 6. С. 685 – 690.

4. Андреев А.А., Рыцк Е.Ю., Сальникова Е.Б., Толмачева Е.В., Великославинский С.Д., Лебедева Ю.М., Богомолов Е.С., Плоткина Ю.В., Федосеенко А.М. О возрасте метабазитов раннебайкальского метаморфического комплекса (Кичерская Зона, Байкало-Муйский Пояс): U-Pb данные по циркону // Материалы совещания «Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса (от океана к континенту)». Иркутск: Институт земной коры СО РАН. 2018. Вып. 16. С. 13 – 14.

5. Арискин А.А., Конников Э.Г., Данюшевский Л.В., Костицын Ю.А., Меффре С., Николаев Г.С., Мак-Нил Э., Кислов Е.В., Орсоев Д.А. Геохронология Довыренского интрузивного комплекса в неопротерозое (Северное Прибайкалье, Россия) // Геохимия. 2013. № 11. С. 955 – 972.

6. Арискин А.А., Данюшевский Л.В., Конников Э.Г., Маас Р., Костицын Ю.А., Мак-Нил Э., Меффре С., Николаев Г.С., Кислов Е.В. Довыренский интрузивный комплекс (Северное Прибайкалье, Россия): изотопно-геохимические маркеры контаминации исходных магм и экстремальной обогащённости источника // Геология и геофизика. 2015. Т. 56. № 3. С. 528 – 556.

7. Балыкин П.А., Поляков Г.В., Богнибов В.И., Петров Т.Е. Протерозойские ультрабазит-базитовые формации Байкало-Становой области. Новосибирск: Наука, 1986. 206 с. Беличенко В.Г. Каледониды Байкальской горной области. Новосибирск: Наука.
 1977. 134 с.

9. Богнибов В.И., Изох А.Э., Поляков Г.В., Гибшер А.С., Мехоношин А.С. Состав и геодинамические обстановки формирования титаноносных ультрабазит-базитовых массивов Центрально-Азиатского складчатого пояса // Геология и геофизика. 2000. № 8. С. 1083 – 1097.

10. Божко Н.А. Рифейская аккреция террейнов в тектонической эволюции Байкальской горной области. Доклады Академии наук. 1995. Т. 345. С. 654 – 657.

11. Божко Н.А., Парфенова О.В., Кирмасов А.Б., Клочко А.А. Структурнометаморфическая эволюция и палеотектоническая природа раннедокембрийских комплексов восточной части Байкало-Муйского пояса // Вестник Московского университета. 1999а. Серия 4: Геология. № 2. С. 9 – 18.

12. Божко Н.А., Талицкий В.Г., Кирмасов А.Б. Клочко А.А., Парфенова О.В., Королек Т.Л. Структурно-метаморфические критерии расчленения позднедокембрийских толщ (на примере Келяно-Иракиндинской зоны Байкало-Муйского пояса) // Вестник Московского университета. 1999б. Серия 4. Геология. № 4. С. 14 – 25.

13. Булгатов А.Н. Тектонотип байкалид. Новосибирск: Наука, 1983. 193 с.

14. Булгатов А.Н. Геодинамика Байкальской горной области в позднем рифее и вендраннем палеозое. Новосибирск: Изд-во «Гео». 2015. 191 с.

15. Булдыгеров В.В., Дольник Т.А., Кравчинский А.Я., Житков А.Н., Герасимов Н.С. Вулканогенные образования Олокитского прогиба (Северное Прибайкалье) // Геология и геофизика. 1988. № 3. С. 8 – 17.

16. Булдыгеров В.В., Срывцев Н А., Исаков Ю.А., О раннепалеозойском вулканизме центральной части Байкальской горной области. // Геология и геофизика. 1995. Т. 36. № 1. С. 31 – 38.

 Бухаров А.А., Глазунов В.О., Рыбаков Н.М. Байкало-Витимский нижнепротерозойский зеленокаменный пояс // Геология и геофизика. 1985. № 7. С. 33 – 40.
 Ванин В.А., Гладкочуб Д.П., Донская Т.В. Неопротерозойская островодужная ассоциация золоторудного поля Мукодек (Северное Прибайкалье) // Геодинамика и тектонофизика. 2014. Т. 5. №3. С. 743 – 762.

19. Ванин В.А., Донская Т.В., Гладкочуб Д.П., Хубанов В.Б. Возраст габброидов северной части Байкало-Муйского пояса // Геодинамическая эволюция литосферы

Центрально-Азиатского подвижного пояса (от океана к континенту): Материалы совещания. Вып. 16. Иркутск: Институт земной коры СО РАН. 2018. С. 39.

20. Вишневская И.А., Летникова Е.Ф., Каныгина Н.А., Прошенкин А.И., Солошенко Н.Г., Ветров Е.В., Киселева В.Ю. Изотопная хемостратиграфия и U-Pb датирование детритовых цирконов венд-кембрийских отложений Северо-Муйской глыбы // Геология и геофизика. 2018. Т. 59. № 11. С. 1795 – 1814.

21. Владимиров А.Е., Коробейников Н.К., Четвертаков И.В. Государственная геологическая карта Российской Федерации масштаба 1:200000, изд. второе, серия Муйская, лист О-50-XXV и объяснительная записка. СПб.: ВСЕГЕИ. 2004. 214 с.

 Врублевская Т.Т., Цыганков А.А. Минералогия и условия формирования Нюрундуканского массива (Северное Прибайкалье) // Известия Вузов. Геология и разведка.
 2001. № 1. С. 58 – 74.

23. Врублевская Т.Т., Цыганков А.А., Орсоев Д.А. Контактово-реакционные процессы в Нюрундуканском ультрамафит-мафитовом массиве (Северное Прибайкалье) // Геология и геофизика. 2003. Т.44. № 3. С. 207 – 223.

24. Врублевская Т.Т., Цыганков А.А., Цыренов Б.Ц. Петрология Гасан-Дякитского ультрамафит-мафитового массива (Северное Прибайкалье) // Известия Вузов. Геология и разведка. 2004. № 2. С. 35 – 43.

 Габов Н.Ф., Добрецов Н.Л., Кушев В.Г. Эклогиты и эклогитоподобные породы в Северном Прибайкалье. // Петрология и минералогия базитов Сибири. М.: Наука. 1984.
 С. 36 – 50.

26. Гладкочуб Д.П., Станевич А.М., Мазукабзов А.М., Донская Т.В., Писаревский С.А., Николь Г., Мотова З.Л., Корнилова Т.А. Ранние этапы развития Палеоазиатского океана: данные по LA-ICP-MS датированию детритовых цирконов из позднедокембрийских толщ южного фланга Сибирского кратона // Геология и геофизика. 2013. Т. 54. № 10. С. 1472 – 1490.

27. Гордиенко И.В. Геодинамическая эволюция поздних байкалид и палеозоид складчатого обрамления юга Сибирской платформы // Геология и геофизика. 2006. Т. 47. № 1. С. 53 – 70.

28. Гордиенко И.В., Булгатов А.Н., Ласточкин Н.И., Ситникова В.С. Состав, U-Pb изотопный возраст (SHRIMP II) офиолитовой ассоциации Шаманской палеоспрединговой

зоны и условия ее формирования (Северное Забайкалье) // ДАН. 2009. Т. 429. № 3. С. 359 – 364.

29. Гордиенко И.В., Булгатов А.Н., Руженцев С.В., Минина О.Р., Климук В.С., Ветлужских Л.И., Некрасов Г.Е., Ласточкин Н.И., Ситникова В.С., Метелкин Д.В., Гонегер Т.А., Лепехина Е.Н. История развития Удино-Витимской островодужной системы Забайкальского сектора Палеоазиатского океана в позднем рифее–палеозое // Геология и геофизика. 2010. Т. 51. № 5. С. 589 – 614.

30. Гордиенко И.В. Связь субдукционного и плюмового магматизма на активных границах литосферных плит в зоне взаимодействия Сибирского континента и Палеоазиатского океана в неопротерозое и палеозое // Геодинамика и тектонофизика. 2019. Т. 10. вып. 2. С 405 – 457.

31. Гордиенко И.В. Роль островодужно-океанического, коллизионного и внутриплитного магматизма в формировании континентальной коры Монголо-Забайкальского региона: по структурно-геологическим, геохронологическим и Sm-Nd изотопным данным // Геодинамика и тектонофизика. 2021. Т. 12. вып. 1. С. 1 – 47.

32. Грудинин М.И. Базит-гипербазитовый магматизм Байкальской горной области. Новосибирск: Наука. 1979. 156 с.

33. Грудинин М.И., Меньшагин Ю.В. Ультраосновные и основные породы Южно-Муйской глыбы и ее обрамления (Северное Прибайкалье) // Геология и геофизика. 1989. №
9. С. 32 – 38.

34. Грудинин М.И., Мазукабзов А.М., Демин И.А. Ультрабазит-базитовый машматизм обрамления Муйской глыбы (Средневитимская горная область) // Бюллетень МОИП. Отдел геологический. 2002. Т. 77. № 4. С. 77 – 86.

35. Гусев Г.С., Песков А.И., Соколов С.К. Палеогеодинамика Муйского сегмента протерозойского Байкало-Витимского пояса // Геотектоника. 1992. № 2. С. 72 – 86.

36. Дмитриева Н.В., Летникова Е.Ф., Буслов М.М., Прошенкин А.И., Джен Х. Позднедокембрийские терригенные породы Анамакит-Муйской зоны Байкало-Муйского пояса: геохимия и данные по LA-ICP-MS датированию детритовых цирконов // Геология и геофизика. 2013. Т. 54. № 10. С. 1491 – 1506.

 З7. Добрецов Н.Л. Офиолиты и проблемы Байкало-Муйского офиолитового пояса // Магматизм и метаморфизм зоны БАМ и их роль в формировании полезных ископаемых.
 Т.1. Новосибирск: Наука. 1983. С. 11 – 19. 38. Добрецов Н.Л., Пономарев В.Г., Ковалев К.Р. Геологическое развитие и особенности металлогении Олокитской троговой структуры (Байкальская горная область) // Докембрийские троговые структуры Байкало-Амурского региона и их металлогения: Материалы совещания. Новосибирск. 1985. С. 53 – 67.

Добрецов Н.Л., Булгатов А.Н. Геодинамическая карта Забайкалья (принципы составления и легенда). Новосибирск, 1991. 52 с. (Препринт / ОИГГМ СО АН СССР; № 8).
 Добрецов Н.Л., Буслов М.М., Й. де Граве, Скляров Е.В. Взаимосвязь магматических, осадочных и аккреционно-коллизионных процессов на Сибирской платформе и ее складчатом обрамлении // Геология и геофизика. 2013. Т. 54. № 10. С. 1451 – 1471.

41. Добржинецкая Л.Ф. Петрохимия и геохимия вулканогенных и плутонических пород Байкало-Витимского пояса раннего протерозоя // Геохимия. 1985. № 7. С. 930 – 945.

42. Добржинецкая Л.Ф. Деформации магматических пород в условиях глубинного тектогенеза. М.: Наука. 1989. 288 с.

43. Доливо-Добровольский Д.В. TWQ-Comb. 2003.

http://www.dimadd.ru/en/Programs/twqcomb.

44. Доливо-Добровольский Д.В. TWQ-View. 2013.

http://www.dimadd.ru/en/Programs/twqview.

45. Донская Т.В., Бибикова Е.В., Гладкочуб Д.П., Мазукабзов А.М., Баянова Т.Б., ДеВаэле Б., Диденко А.Н., Бухаров А.А., Кирнозова Т.И. Петрогенезис и возраст вулканитов кислого состава Северо-Байкалького вулканоплутонического пояса, Сибирский кратон // Петрология. 2008. Т. 16. № 5. С. 452 – 479.

46. Донская Т.В., Гладкочуб Д.П., Мазукабзов А.М., Пресняков С.Л., Баянова Т.Б. Палеопротерозойские гранитоиды чуйского и кутимского комплексов (юг Сибирского кратона): возраст, петрогенезис и геодинамическая природа // Геология и геофизика. 2013. Т. 54. № 3. С. 371 – 389.

47. Ефремов С.В. Раннепалеозойские адакиты Восточного Саяна. Геохимические особенности и источники вещества // Геохимия. 2010. № 11. С. 1185 – 1201.

48. Зорин Ю.А., Беличенко В.Г., Турутанов Е.Х., Мазукабзов А.М., Скляров Е.В., Мордвинова В.В. Строение земной коры и геодинамика Байкальской складчатой области // Отечественная геология. 1997. № 10. С. 37 – 44.

49. Зорин Ю.А., Скляров Е.В., Беличенко В.Г., Мазукабзов А.М. Механизм развития системы островная дуга – задуговой бассейн и геодинамика Саяно-Байкальской складчатой

области в позднем рифее – раннем палеозое // Геология и геофизика. 2009. Т. 50. № 3. С. 209 – 226.

50. Изох А.Э., Гибшер А.С., Журавлев Д.З., Балыкин П.А. Sm-Nd данные о возрасте ультрабазит-базитовых массивов восточной ветви Байкало-Муйского офиолитового пояса // ДАН. 1998. Т. 360. № 1. С. 88 – 92.

51. Каулина Т.В. Образование и преобразование циркона в полиметаморфических комплексах. Апатиты: КНЦ РАН. 2010. 144 с.

Кислов Е.В. Йоко-Довыренский расслоенный массив. Изд. БНЦ СО РАН, Улан-Удэ.
 1998. 265 с.

53. Кирмасов А.Б. Структурная эволюция и палогеодинамика келяно-иракиндинской зоны (восточная часть Байкало-Амурского пояса) в позднем докембрии-палеозое. Автореф. дис. ... канд. геол.-минерал. наук. Москва. 1998. 32 с.

54. Кирмасов А.Б., Талицкий В.Г., Божко Н.А. Структурная эволюция Келяно-Иракиндинской зоны (Восточная часть Байкало-Муйского пояса) в позднем докембрии и раннем палеозое // Геотектоника. 2000. № 1. С. 61 – 78.

55. Классификация магматических (изверженных) пород и словарь терминов. Рекомендации Подкомиссии по систематике изверженных пород Международного союза геологических наук. М.:Недра. 1997. 248с.

56. Клитин К.А., Павлова Т.Г., Постельников Е.С. Байкалиды Юго-Восточной Сибири.М.: Наука. 1970. 144с.

57. Клитин К.А., Павлова Т.Г. Офиолитовый комплекс Байкальской складчатой области // ДАН СССР. 1974. Т. 215. № 2. С. 413 – 416.

58. Клитин К.А., Домнина Е.А., Риле Г.В. Строение и возраст офиолитового комплекса Байкало-Витимского поднятия // Бюллетень МОИП. Новая серия. Отдел геологический. 1975. № 1. С. 82 – 94.

59. Коваленко В.И., Ярмолюк В.В., Ковач В.П., Будников С.В., Журавлев Д.З., Козаков И.К., Котов А.Б., Рыцк Е.Ю., Сальникова Е.Б. Корообразующие магматические процессы при формировании Центрально-Азиатского складчатого пояса: Sm-Nd изотопные данные // Геотектоника. 1999. № 3. С. 21 – 41.

60. Ковач В. П., Рыцк Е.Ю., Великославинский С.Д. и др. Возраст детритового циркона и источники сноса терригенных пород Олокитской зоны (Северное Прибайкалье) // Доклады РАН. Науки о Земле. 2020. Т. 493. № 2. С. 36 – 40.

61. Козырева И.В., Коников А.З., Травин Л.В. Метаморфизм нижнедокембрийских образований Северо-Муйской глыбы и ее обрамления (Средневитимская горная страна) // Геология и геохронология докембрия Сибирской платформы и ее обрамления. Л., Наука. 1990. С. 67 – 88.

62. Колман Р. Г. Офиолиты. М.: Мир. 1979. 262 с.

63. Конников Э.Г. Дифференцированные гипербазит-базитовые комплексы докембрия Забайкалья (петрология и рудообразование). Новосибирск: Наука. 1986. 227 с.

64. Конников Э.Г. К проблеме офиолитов Байкало-Муйского пояса // Геология и геофизика. 1991. № 3. С. 119 – 129.

65. Конников Э.Г., Цыганков А.А. О гетерогенности Байкало-Муйского офиолитового пояса // ДАН. 1992. Т. 327. № 1. С. 115 – 120.

66. Конников Э.Г., Гибшер А.С., Изох А.Э. и др. Позднепротерозойская эволюция северного сегмента Палеоазиатского океана: новые радиологические, геологические и геохимические данные // Геология и геофизика. 1994а. Т. 35. № 7-8. С. 152 – 168.

67. Конников Э.Г., Посохов В.Ф., Врублевская Т.Т. О генезисе плагиомигматитов в докембрийских офиолитах Северного Прибайкалья // Геология и геофизика. 1994б. № 1. С. 82 – 88.

68. Конников Э.Г., Цыганков А.А., Врублевская Т.Т. Байкало-Муйский вулканоплутонический пояс: структурно – вещественные комплексы и геодинамика. М.: ГЕОС. 1999. 163 с.

69. Костицын Ю.А. Sm-Nd и Lu-Hf изотопные системы Земли: отвечают ли они хондритам? // Петрология. 2004. Т. 12 № 5 С. 451 – 466.

70. Костицын Ю.А., Аносова М.О. U-Pb возраст экструзивных пород кальдеры Уксичан в срединном хребте Камчатки – применение лазерной абляции к датированию молодых цирконов // Геохимия. 2013. № 2. С. 171 – 179.

71. Костицын Ю.А., Журавлев А.З. Анализ погрешностей и оптимизация метода изотопного разбавления. Геохимия. 1987. №7. С. 1024 – 1036.

72. Куширо И., Йодер Г.С. Реакция между форстеритом и анортитом при высоких давлениях. В кн.: Петрология верхней мантии. М.: Мир, 1968. С. 294 – 299.

73. Лебедева Ю.М., Рыцк Е.Ю., Андреев А.А., Великославинский С.Д., Богомолов Е.С. Условия формирования гранулитов Северного Байкала // Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса (от океана к континенту). Иркутск: ИЗК СО РАН. 2016. Выпуск 14. С. 175 – 177.

74. Лучицкая М.В. Соотношение гранитоидного аккреционнго и адакитового магматизма на Тихоокеанской активной окраине. ДАН. 2002. Т. 385. №2. С. 226 – 230.

75. Мазукабзов А.М. Структура и геодинамика южной окраины Сибирского кратона: Автореф. дис. ... докт. геол.-мин. наук. Иркутск. 2003. 33 с.

76. Мазукабзов А.М., Гладкочуб Д.П., Донская Т.В., Станевич А.М., Диденко А.Н., Бибикова Е.В., Водовозов В.Ю., Казанский А.А. и др. Эволюция южной части Сибирского кратона в докембрии. Новосибирск: Изд-во СО РАН. 2006. 367 с.

77. Макрыгина В.А., Конева А.А., Пискунова Л.Ф. О гранулитах в нюрундуканской серии Северного Прибайкалья // ДАН СССР. 1989. Т.307. №1. С. 195 – 201.

78. Макрыгина В.А., Конников Э.Г., Неймарк Л.А., Пахольченко Ю.А., Посохов В.Ф., Сандимирова Г.П., Томиленко А.А., Цыганков А.А., Врублевская Т.Т. О возрасте гранулитчарнокитового комплекса в нюрундуканской свите Северного Прибайкалья (парадокс радиохронологии) // ДАН. 1993. Т. 332. № 4. С. 486 – 489.

79. Макрыгина В.А., Петрова З.И., Сандимирова Г.П., Пахольченко Ю.А. Новые данные о возрасте толщ, обрамляющих Чуйское и Прибайкальское поднятия (Северное и Западное Прибайкалье // Геология и геофизика. 2005. Т.46. № 7. С. 714 – 722.

Минина О.Р. Ранние герциниды Байкало-Витимской складчатой системы (состав, строение, геодинамическая эволюция). Автореф. дис. ... докт. геол.-минерал. наук. Иркутск.
 2014. 36 с.

 Минина О.Р., Доронина Н.А., Некрасов Г.Е., Ветлужских Л.И., Ланцева В.С., Аристов В.А., Наугольных С.В., Куриленко А.В., Ходырева Е.В. Ранние герциниды Байкало-Витимской складчатой системы (Западное Забайкалье) // Геотектоника. №3. 2016. С. 63 – 84.

82. Митрофанов Г.Л. Эволюция тектонических структур и этапы становления континентальной земной коры в Северо-Западном Забайкалье // Тектоника и металлогения Восточной Сибири. Иркутск. 1978. С. 38 – 57.

Митрофанов Г.Л. Байкальский мегакомплекс внутренних зон Байкальской горной области. Тектоника Байкальского (рифейского) мегакомплекса Сибири // Новосибирск, ИгиГ. 1981. С. 73 – 87.

84. Мишина Е.И., Костицын Ю.А., Федоровский В.С. Архейский возраст протолита палеозойских гранито-гнейсов Ольхонского региона (Байкал): Sm-Nd и Rb-Sr изотопные данные // Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса (от океана к континенту). Материалы совещания. Иркутск, ИЗК РАН. 2005. Т. 2. С. 56 – 59.

85. Неймарк Л.А., Рыцк Е.Ю., Левченко и др. О раннепротерозойско-верхнерифейском возрасте пород Олокитского комплекса (Северное Прибайкалье) по данным U-Pb цирконовой геохронологии // Геология и геохронология докембрия Сибирской платформы и её обрамления. Л.: Наука. 1990. С. 206 – 222.

86. Неймарк Л.А., Рыцк Е.Ю., Гороховский Б.М., Овчинникова Г.В., Киселева Е.И., Конкин В.Д. Изотопный состав свинца и генезис свинцово-цинкового оруденения Олокитской зоны Северного Прибайкалья // Геология рудных месторождений. 1991. № 6. С. 34 – 48.

Неймарк Л.А., Ръщк Е.Ю., Гороховский Б.М. и др. О возрасте «муйских» гранитов
 Байкало-Витимского офиолитового пояса (U-Pb- и Sm-Nd-изотопные свидетельства) //
 Доклады Академии наук. 1995. Т. 343. № 5. С. 673 – 676.

88. Неймарк Л.А., Ларин А.М., Немчин А.А. и др. Геохимические, геохронологические (U-Pb) и изотопные (Pb, Nd) свидетельства анорогенного характера магматизма Северо-Байкальского вулкано-плутонического пояса // Петрология. 1998. Т. 6. № 2. С. 139 – 164.

89. Некрасов Г.Е., Родионов Н.В., Бережная Н.Г., Сергеев С.А., Руженцев В.С., Минина О.Р., Голионко Б.Г. U-Pb-возраст цирконов из плагиогранитных жил мигматизированных амфиболитов Шаманского хребта (Икат-Багдаринская зона, Витимское нагорье, Забайкалье) // ДАН. 2007. Т. 412. № 5. С. 661 – 664.

90. Немеров В.К., Станевич А.М. Эволюция рифей-вендских обстановок биолитогенеза Байкальской горной области // Геология и геофизика. 2001. Т. 42. №3. С. 456 – 470.

91. Орсоев Д.А., Гордиенко И.В., Булгатов А.Н., Бадмацыренова Р.А., Дриль С.И., Посохов В.Ф. Неопротерозойские метабазальты Тыйского комплекса комплекса Олокитского рифтогенного прогиба (Байкало-Муйский пояс): состав, U-Pb возраст, изотопно-геохимическая характеристика, геодинамические следствия // Геология и геофизика. 2021. С. 89–95.

136

92. Парфенов Л.М., Берзин Н.А., Ханчук А.И. и др. Модель фомирования орогенных поясов Центральной и Северо-Восточной Азии // Тихоокеанская геология. 2003. Т. 22. № 6. С. 7 – 41.

93. Петрова З.И., Левицкий В.И. Петрология и геохимия гранулитовых комплексов Прибайкалья. Новосибирск: Наука. 1984. 200 с.

94. Переляев В.И. Ультрабазит-базитовые комплексы западной части Средне-Витимской горной страны. Автореф. дис. ... канд. геол.-мин. наук. Иркутск: ИЗК СО РАН. 2003. 20 с.

95. Перчук Л.Л., Геря Т.В. Доказательство подвижности калия при чарнокитизации гнейсов // ДАН. 1993. Т. 330. №2. С. 245 – 248.

96. Песков А.И. Островодужные и океанические комплексы Муйского сегмента Байкало-Витимского пояса. Автореф. канд. дисс. Москва. МГРИ. 1990. 24 с.

97. Покровский Б.Г., Мележик В.А., Буякайте М.И. Изотопный состав С, О, Sr и S в позднедокембрийских отложениях Патомского комплекса, Центральная Сибирь. Сообщение 1. Результаты, изотопная стратиграфия и проблемы датирования // Литология и полезные ископаемые. 2006. № 5. С. 505 – 530.

98. Покровский Б.Г., Буякайте М.И. Геохимия изотопов С, О и Sr в неопротерозойских карбонатах юго-западной части Патомского палеобассейна, юг Средней Сибири // Литология и полезные ископаемые. 2015. № 2. С. 159 – 186.

99. Ремизов Д.Н., Хаин Е.В., Федотова А.А. Концепция астеносферных окон в связи с особенностями строения и магматизма юга Сибири и Полярного Урала / Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса (от океана к континенту) // Иркутск: ИЗК СО РАН. 2004. Т. 2. С. 69 – 72.

100. Руженцев С.В., Минина О.Р., Аристов В.А., Голионко Б.Г., Ларионов А.Н., Лыхин Д.А., Некрасов Г.Е. Геодинамика Еравнинской зоны (Удино-Витимская складчатая система Забайкалья): геологические и геохронологические данные // ДАН. 2010. Т. 434. № 3. С. 361 – 364.

101. Руженцев С.В., Минина О.Р., Некрасов Г.Е. и др. Байкало-Витимская складчатая система: строение и геодинамическая эволюция // Геотектоника. 2012. № 2. С. 3 – 28.

102. Рыцк Е.Ю., Неймарк Л.А., Амелин Ю.В. Возраст и геодинамические обстановки формирования палеозойских гранитоидов северной части Байкальской складчатой области // Геотектоника. 1998. № 5. С. 46 – 60. 103. Рыцк Е.Ю., Амелин Ю.В., Крымский Р.Ш. Байкало-Муйский пояс: возраст, этапы формирования и эволюция корообразования (U-Pb и Sm-Nd изотопные свидетельства) // Тектоника, геодинамика и процессы магматизма и метаморфизма. Москва. 1999. Т 2. C. 93 – 95.

104. Рыцк Е.Ю., Амелин Ю.В., Ризванова Н.Г. и др. Возраст пород Байкало-Муйского складчатого пояса // Стратиграфия. Геологическая корреляция. 2001. Т. 9, № 4. С. 3 – 15.

105. Рыцк Е.Ю., Макеев А.Ф., Глебовицкий В.А., Федосеенко А.М. Вендский (590±5 млн лет) возраст Падринской серии Байкало-Муйского складчатого пояса: U-Pb данные по циркону // ДАН. 2004. Т. 397. № 4. С. 517 – 519.

106. Рыцк Е.Ю., Ковач В.П., Коваленко В.И., Ярмолюк В.В. Структура и эволюция континентальной коры Байкальской складчатой области // Геотектоника. 2007а. №6. С. 23 – 51.

107. Рыцк Е.Ю., Макеев А.Ф., Глебовицкий В.А., Федосеенко А.М. Ранневендский возраст многофазных габбро-гранитных комплексов Каралон-Мамаканской зоны Байкало-Муйского пояса: новые U-Pb данные по циркону // ДАН. 2007б. Т. 415. № 4. С. 535 – 538.

108. Рыцк Е.Ю., Ковач В.П., Ярмолюк В.В., Коваленко В.И., Богомолов Е.С., Котов А.Б. Изотопная структура и эволюция континентальной коры Восточно-Забайкальского сегмента Центрально-Азиатского складчатого пояса // Геотектоника. 2011. № 5. С. 17 – 51. 109. Рыцк Е.Ю., Котов А.Б., Ковач В.П., Сальникова Е.Б., Андреев А.А., Великославинский С.Д., Толмачева Е.В., Яковлева С.З., Федосеенко А.М. Новые данные о геологическом строении и возрасте метаморфических комплексов Кичерской зоны Байкало-Муйского складчатого пояса // Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса: от океана к континенту. Иркутск. 2012а. Вып. 10. Т. 2. С. 55-56.

110. Рыцк Е.Ю., Котов А.Б., Сальникова Е.Б., Ковач В.П., Великославинский С.Д., Андреев А.А., Алексеев И.А., Яковлева С.З., Федосеенко А.М. U-Pb геохронология габбродиорит-тоналит-гранодиоритовых интрузий Байкало-Муйского пояса // Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса: от океана к континенту. Иркутск. 2012б. Вып. 10. Т. 2. С. 57.

111. Рыцк Е.Ю., Котов А.Б., Андреев А.А., Ярмолюк В.В. и др. Строение и возраст Байкальского массива гранитоидов: новые свидетельства раннебайкальских событий в Байкало-Муйском подвижном поясе // ДАН. 2013. Т. 453. № 6. С. 662 – 665.

112. Рыцк Е.Ю., Сальникова Е.Б., Глебовицкий В.А., Великославенский С.Д., Алексеев И.А., Федосеенко А.М., Плоткина Ю.В. Вендский возраст гранитоидов и плагиогранитов таллаинского комплекса (Байкало-Муйский пояс): U-Pb изотопные данные // ДАН. 2017а. Т. 474. № 2. С. 214 – 219.

113. Рыцк Е.Ю., Великославинский С.Д., Богомолов Е.С., Андреев А.А., Толмачева Е.В. Рифтогенная обстановка формирования гипербазит-базитовых комплексов Северного Прибайкалья: новые геологические, геохимические и изотопные данные // «Ультрамафитмафитовые комплексы: геология, строение, рудный потенциал». Материалы V Международной конференции. Улан-Удэ. 2017б. С. 239 – 241.

114. Салоп Л.И. Геология Байкальской горной области. М.: Недра. 1964. 516 с.

115. Салоп Л.И. Геология Байкальской горной области. Т. П. М.: Недра, 1967. 698с.

116. Силантьев С.А., Кепке Ю., Арискин А.А., Аносова М.О., Краснова Е.А., Дубинина Е.О., Зур Г. Геохимическая природа и возраст плагиогранит/габбро-норитовой ассоциации внутреннего океанического комплекса Срединно-Атлантического хребта на 5°10'ю.ш. // Петрология. 2014. Т. 22. № 2. С. 1 – 21

117. Скублов С.Г. Нюрундуканский мафический комплекс Северо-Западного Прибайкалья: состав, структура, петрогенезис. Автореф. Дис. ... канд. геол.-мин. наук. СПб.. 1994. 21с.

118. Скублов С.Г., Другова Г.М., Московченко Н.И., Скублов Д.Г. Геохимия пироксенов в процессе эндербитизации основных кристаллосланцев (на примере Нюрундуканского комплекса Северо-Западного Прибайкалья) // ЗВМО. 1999. №2. С. 109 – 115.

119. Скузоватов С.Ю., Скляров Е.В., Шацкий В.С., Ванг К.-Л., Куликова К.В., Зарубина О.В. Возраст метаморфизма и природа протолита гранулитов Южно-Муйской глыбы (Байкало-Муйский складчатый пояс) // Геология и геофизика. 2016. Т. 57. №. 3. С. 575 – 591.

120. Сомсикова А.В., Костицын Ю.А., Федотова А.А., Разумовский А.А., Хаин Е.В., Астраханцев О.В,. Батанова В.Г., Аносова М.О. Поздненеопротерозойский гранитоидный магматизм Байкало-Муйского складчатого пояса, офиолитовые и постофиолитовые плагиограниты. Геохимия. 2021. Т. 66. № 1. С. 15 – 36.

121. Сотникова И.А. Минералого-геохимические особенности редкометальных щелочных пород Северного Прибайкалья: Автореф. дис. канд.... геол.-мин. наук. Иркутск: ИГХ РАН, 2009. 22с.

122. Срывцев Н.А., Халилов В.А., Булдыгеров В.В., Переляев В.И. Геохронология гранитоидов Байкало-Муйского пояса //Геология и геофизика. 1992. № 9. С. 72 – 78.

123. Станевич А.М., Файзулина А.М. Микрофоссилии в стратиграфии позднего докембрия Байкало-Патомской горной области. М., Недра. 1992. 26 с.

124. Станевич А.М., Мазукабзов А.М., Постников А.А. Немеров В.К., Писаревский С.А., Гладкочуб Д.П., Донская Т.В., Корнилова Т.А. Северный сегмент Палеоазиатского океана в неопротерозое: история седиментогенеза и геодинамическая интерпретация. Геология и геофизика. 2007. Т. 48. № 1. С. 60 – 79.

125. Тейлор С.Р., Мак-Леннан С.М. Континентальная кора, её состав и эволюция. М.: Мир. 1988. 384 с.

126. Туркина О.М. Модельные геохимические типы тоналит-трондьемитовых расплавов и их природные эквиваленты // Геохимия. 2000. № 7. С. 704 – 717.

127. Туркина О.М. Тоналит-трондьемитовые комплексы надсубдукционных обстановок (на примере позднерифейских плагиогранитоидов ЮЗ окраины Сибирской платформы). Геология и геофизика. 2002. Т. 43. № 5. С. 418 – 431.

128. Туркина О.М., Ножкин А.Д., Баянова Т.Б. Источники и условия образования раннепротерозойских гранитоидов юго-западной окраины Сибирского кратона // Петрология. 2006. Т. 14. № 3. С. 282–303.

129. Федоровский В.С., Владимиров А.Г., Хаин Е.В. и др. Тектоника, метаморфизм и магматизм коллизионных зон каледонид Центральной Азии // Геотектоника. 1995. №3. С. 3 – 22.

130. Федоровский В.С., Скляров Е.В., Изох А.Э., Котов А.Б., Лавренчук А.В., Мазукабзов А.М. Сдвиговый тектогенез и щелочно-базитовый магматизм в коллизионной системе каледонид Западного Прибайкалья // Геология и геофизика. 2010. Т. 51. №5. С. 682 – 700.

131. Федотова А.А., Бибикова Е.В., Симакин С.Г. Геохимия циркона (данные ионного микрозонда) как индикатор генезиса минерала при геохронологических исследованиях // Геохимия. 2008. №9. С. 980 – 997.

132. Федотова А.А., Разумовский А.А., Хаин Е.В., Аносова М.О., Орлова А.В. Этапы формирования магматических комплексов позднего неопротерозоя запада Байкало-Муйского пояса. Геотектоника. 2014. № 4. С. 44 – 66.

133. Ферштатер Г.Б. Эмпирический плагиоклаз-роговообманковый барометр // Геохимия. 1990. № 3. С. 328 – 335.

134. Хоментовский В.В. Байкалий Сибири (850-650 млн. лет) // Геология и геофизика.
2002. Т. 43. № 4. С. 313 – 333.

135. Хоментовский В.В., Постников А.А., Карлова Г.А. Венд Байкало-Патомского нагорья // Геология и геофизика. 2004. Т.45. № 4. С. 465 – 484.

136. Цыганков А.А., Конников Э.Г. Геохимические типы и геодинамические условия становления габброидных комплексов восточной части Байкало-Муйского офиолитового пояса // Геология и геофизика. 1995. Т. 36. № 1. С. 19 – 30.

137. Цыганков А.А. Минералогия и термометрия гранулит-чарнокитового комплекса Северного Прибайкалья // ЗВМО. 1996. №6. С. 195 – 201.

138. Цыганков А.А. Метавулканиты Байкало-Муйского офиолитового пояса: геохимия и корреляция // Геология и геофизика. 1998. Т. 39. № 9. С. 1303 – 1323.

139. Цыганков А.А., Врублевская Т.Т., Посохов В.Ф. Гиперстенсодержащие аляскитовые гнейсограниты Северного Прибайкалья: геохронология и петрогенезис // Геохимия. 2000. № 6. С. 599 – 609.

140. Цыганков А.А. Магматическая эволюция Байкало-Муйского пояса в позднем докембрии. Новосибирск: Изд-во СО РАН: 2005. 306 с.

141. Чугаев А.В., Будяк А.Е., Чернышев И.В., Шатагин К.Н., Олейникова Т.И., Тарасова Ю.И., Скузоватов С.Ю. Источники сноса обломочного материала при формировании неопротерозойских метаосадочных пород Байкало-Патомского пояса (Северное Забайкалье) по данным Sm-Nd изучения // Геохимия. 2017. №. 1. С. 17 – 25.

142. Чумаков Н.М., Покровский Б.Г., Мележик В.А. Геологическая история патомского комплекса, поздний докембрий, Средняя Сибирь // ДАН. 2007. Т. 413. № 3. С. 379 – 383.

143. Шарпенок Л.Н., Костин А.Е., Кухаренко Е.А. ТАЅ-диаграмма сумма щелочей – кремнезём для химической классификации и диагностики плутонических пород. // Региональная геология и металлогения. № 56. 2013. С. 40 – 50.

144. Шацкий В.С., Ягоутц Э., Рыбошлыков Ю.В., Козьменко О.А., Вавилов М.А. Эклогиты Северо-Муйской глыбы: свидетельство вендской коллизии в Байкало-Муйском офиолитовом поясе // Доклады АН. 1996. Т. 350. № 5. С. 677 – 680.

145. Шацкий В.С., Ситникова Е.С., Томиленко А.А. Рагозин А.Л., Козьменко О.А., Ягоутц Э. Эклогит-гнейсовый комплекс Муйской глыбы (Восточная Сибирь): возраст, минералогия, геохимия, петрология // Геология и геофизика. 2012. Т 53. № 6. С. 657 – 682. 146. Шацкий В.С., Скузоватов С.Ю., Рагозин А.Л., Дриль С.И. Свидетельства неопротерозойской континентальной субдукции в Байкало-Муйском складчатом поясе // ДАН. 2014. Т. 459. № 2. С. 228 – 231.

147. Ярмолюк В.В., Коваленко В.И. Глубинная геодинамика, мантийные плюмы и их роль в формировании Центрально-Азиатского складчатого пояса // Петрология. 2003а. Т. 11. № 6. С. 556 – 586.

148. Ярмолюк В.В., Коваленко В.И., Ковач В.П. и др. Геодинамика формирования каледонид Центрально-Азиатского складчатого пояса // ДАН. 2003б. Т. 389. № 3. С. 354 – 359.

149. Ярмолюк В.В., Коваленко В.И., Ковач В.П., Рыцк Е.Ю., Козаков И.К., Котов А.Б., Сальникова Е.Б. Ранние стадии формирования Палеоазиатского океана: результаты геохронологических, изотопных и геохимических исследований позднерифейских и венд-кембрийских комплексов Центрально-Азиатского складчатого пояса // ДАН. 2006. Т. 410. № 5. С. 657 – 662.

150. Ярмолюк В.В., Кузьмин М.И., Воронцов А.А. Конвергентные границы западнотихоокеанского типа и их роль в формировании Центрально-Азиатского складчатого пояса // Геология и геофизика. 2013. Т. 54. № 12. С. 1831 – 1850.

151. Ярмолюк В.В., Дегтярев К.Е. Докембрийские террейны Центрально-Азиатского орогенного пояса: сравнительная характеристика, типизация и особенности тектонической эволюции // Геотектоника. 2019. Т. 53. № 1. С. 3 – 43.

152. Amelin Yu.V., Ritsk E.Yu., Neymark L.A. Geochronological and Nd-Sr-Pb isotopic study of the relationships between mafic magmatites and ultramafic tectonites in the Chaya massif, Baikal-Muya ophiolite belt // Earth and Planetary Science Letters. 1997. V. 148. P. 299 – 316.

153. Aranovich L.Y., Berman R.G. Optimized standard state and solution properties of minerals. II. Comparisons, predictions, and applications // Contributions to Mineralogy and Petrology. 1996. V. 126. N 1 – 2. P. 25 – 37.

154. Ashwal L.D., Tucker R.D., Zinner E.K. Slow cooling of deep crustal granulites and Pbloss in zircon // Geochimica et Cosmochimica Acta. 1999. 63. P. 2839 – 2851.

155. Baldwin J.A., Brown M, Schmitz M.D. First application of titanium-in-zircon thermometry to ultrahigh-temperature metamorphism // Geology. 2007. V. 35. №4. P. 295 – 298.

156. Berman R.G. Thermobarometry using multiequilibrium calculations: a new technique with petrologic applications // The Canadian Mineralogist. 1991. V. 29. №. 4. P. 833 – 855.

157. Berman R.G., Aranovich L.Y. Optimized standard state and solution properties of minerals. I. Model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO-MgO-CaO-Al₂O₃-TiO₂-SiO₂. Contributions to Mineralogy and Petrology. 1996. V. 126. No. 1 - 2. P. 1 - 24.

158. Bukharov A.A., Glazunov V.G., Konnikov E.G. et al. Early Precambrian of the lake Baikal area. Guidebook for the field trip of the International Conference "Green stone, ophiolitic and intracratonal sialic volcanic belt of the Baikal area". 1990. 225 p.

159. Claoué-Long J.C., Compston W., Roberts J., Fanning C.M. Two Carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ analyses. Society for sedimentary Geology Special Publication. 1995. 54. P. 3 – 21.

160. Cherniak D.J. and Watson E.B. Pb diffusion in zircon // Chemical Geology. 2001. V. 172.P. 5 – 24.

161. Compston W., Williams I.S., Myer C. U–Pb geochronology of zircons from Lunar Breccia
73217 using a sensitive high mass-resolution ion-microprobe // Journal of Geophysical Research.
1984. V. 89. № S02. P. B525–B534.

162. Compston W., Williams I.S., Kirschvink J.L., Zhang Z., Ma G. Zircon U–Pb ages for the Early Cambrian time scale. Journal Geological Society London. 1992. V. 149. P. 171 – 184.

163. Condie K.C., Allen P. & Narayana B.L. Geochemistry of the Archean low- to high-grade transition zone, Southern India. Contributions to Mineralogy and Petrology. 1982. V. 81.
P. 157 – 167.

164. Condie K.C. TTG and adakites: Are they both slab melts? // Lithos. 2005. V. 80. P. 33 – 44.
165. Corfu F., Hanchar J.M., Hoskin P.W.O., Kinny P. Atlas of zircon textures // Reviews in Mineralogy and Geochemistry. 2003. V.53. P. 469 – 500.

 Defant M.J., Drummond M.S. Derivation of some modern arc magmas by melting of young subducted lithosphere // Nature. 1990. V. 347. P. 662 – 665.

167. De Laeter J.R., Kennedy A.K., A double focusing mass spectrometer for geochronology //
 Int. J. Mass Spectrom. 1998. V. 178. P. 43 – 50.

168. DePaolo D.J., Wasserburg G.J. Inferences about magma sources and mantle structure from variations of ¹⁴³Nd/¹⁴⁴Nd // Geophysical Research Letters. 1976. V. 3. №12. P. 743 – 746.

169. Dobretsov N.L., Konnikov E.G., Dobretsov N.N. Precambrian ophiolite belts of southern Siberia, Russia, and their metallogeny // Precambrian Research. 1992. V. 58. № 1-4. P. 427 – 446.

170. Drummond M.S., Defant M.J. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archaean to modern comparisons // Journal of Geophysical Research.
1990. V. 95. P. 21503 – 21521.

171. Drummond M.S., Defant M.J., Kepezhinskas P.K. The petrogenesis of slab derived trondhjemite-tonalitedacite/adakite magmas // Geological Society of America Special Papers.
1996. V. 315. P. 205 – 215.

172. Ewing T.A., Hermann J., Rubatto D. The robustness of the Zr-in-rutile and Ti-in-zircon thermometers during high-temperature metamorphism (Ivrea-Verbano Zone, northern Italy) // Contributions to Mineralogy and Petrology. 2013. V. 165. № 4. P. 757 – 779.

173. Frost B.R. Barnes C.G., Collins W.J., Arculus R.J., Ellis D.J., Frost C.D. A geochemical classification for granitic rocks // Journal of Petrology. 2001. V. 42. № 11. P. 2033 – 2048.

174. Furnes H., Dilek Y. Geochemical characterization and petrogenesis of intermediate to silicic rocks in ophiolites: A global synthesis // Earth-Science Reviews. V. 166. P. 1 - 37.

175. Göğüş O.H., Pysklywec R.N., Şengör A.M.C., Gün E. Drip tectonics and the enigmatic uplift of the Central Anatolian Plateau // Nature Communications. 2017. V. 8. 1538.

176. Hoskin P.W.O., Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis // Reviews in Mineralogy and Geochemistry. 2003. V. 53. № 1. P. 27 – 62.

177. Jackson S.E., Pearson N.J., Griffin W.L., Belousova E.A. The application of laser ablationinductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology // Chemical Geology. 2004. V. 211. P. 47 – 69.

178. Jacobsen S.B., Wasserburg G.J. Sm-Nd evolution of chondrites and achondrites, II // Earth and Planetary Science Letters. 1984. V. 67. № 2. P. 137 – 150.

179. Khain E.V., Bibikova E.V., Salnikova E.V., Kröner A., Gibsher A.S., Didenko A.N., Degtyarev K.E., Fedotova A.A. The Paleo-Asian ocean in the Neoproterozoic and early Paleozoic: new geochronological data and paleotectonic reconstruction // Precambrian Research. 2002. V. 2296. P. 1 - 30.

180. Kotkova' J, Harley SL. Anatexis during high-pressure crustal metamorphism: evidence from Garnet–Whole-rock REE Relationships and Zircon–Rutile Ti–Zr Thermometry in leucogranulites from the Bohemian Massif // Journal of Petrology. 2010. V. 5. № 10. P. 1967 – 2001.

181. Kovalenko V.I., Yarmolyuk V.V., Kovach V.P., Kotov A.B., Kozakov I.K., Salnikova E.B., Larin A.M. Isotope provinces, mechanisms of generation and sources of the
continental crust in the Central Asian Mobil Belt: geological and isotopic evidence // Journal of Asian Earth Sciences. 2004. V. 23. P. 605 – 627.

182. Krogh T.E. A low contamination method for hydrothermal decomposition of zircons and extraction of U and Pb for isotope age determinations // Geochimica et Cosmochimica Acta. 1973.
V. 37. № 3. P. 485 – 495.

183. Kröner A., Rojas-Agramonte Y., Kehelpannala K.V.W., Zack T., Hegner E., Wong J., Barth M. Age, Nd–Hf isotopes, and geochemistry of the Vijayan complex of eastern and southern Sri Lanka: a Grenville-age magmatic arc of unknownderivation // Precambrian Research. 2013. 234. P. 288 – 321.

184. Kröner A., Fedotova A.A., Khain E.V., Razumovskiy A.A., Orlova A.V., Anosova M.O., Perelyaev V.I., Nekrasov G.E., Liu D.Y. Neoproterozoic ophiolite and related high-grade rocks of the Baikal–Muya belt, Siberia: Geochronology and geodynamic implications // Journal of Asian Earth Sciences 111. 2015. P. 138 – 160.

185. Liu S., Li J., Santosh M. First application of the revised Ti-in zircon geothermometer to Paleoproterozoic ultrahigh-temperature granulites of Tuguiwula, Inner Mongolia, North China Craton // Contributions to Mineralogy and Petrology. 2010. V. 159. № 2. P. 225 – 235.

186. Ludwig K.R. Isoplot 3.0. A geochronological toolkit for Microsoft Excel // Berkeley Geochronology Center Special Publication. 2003. № 4. 70 p.

187. Martin H., Smithies R.H., Rapp R., Moyen J.F., Champion D. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implication for crustal evolution // Lithos. 2005. V. 79. P. 1 - 24.

188. Mercier J.C.C. Single-pyroxene thermobarometry // Tectonophysics. 1980. V. 70. № 1–2.
P. 1 – 37.

189. Möller A., O'Brien P.J., Kennedy A., Kröner A. Polyphase zircon in ultrahigh-temperature granulites (Rogaland, SW Norway):constraints for Pb diffusion in zircon // Journal of Metamorphic Geology. 2002. V. 20. P. 727 – 740.

190. Nelson D.R. Compilation of SHRIMP U-Pb zircon geochronology data, 1996. Record (Geological Survey of Western Australia). 1997/2. 189 p.

191. Parfenov L.M., Badarch G, Berzin N.A. et al. Summary of major metallogenic belts in Northeast Asia / Metallogenesis and tectonics of north east Asia // U.S. Geological Survey Professional Paper. 2010. V. 1765. P. 17 - 33.

192. Patchett P.J., Samson S.D. Ages and growth of the continental crust from radiogenic isotopes. Radioactive Geochronometry. 2011. P. 223 – 250.

193. Powell R., Holland T.J.B. An internally consistent thermodynamic dataset with uncertainties and correlations. 3. Application methods, worked examples and a computer program // Journal of Metamorphic Geology. 1988. V. 6. P. 173 – 204.

194. Powerman V., Shatsillo A., Chumakov N., Kapitonov I., Hourigan J. Interaction between the Central Asian Orogenic Belt (CAOB) and the Siberian craton as recorded by detrital zircon suites from Transbaikalia // Precambrian Research. 2015. V. 267. P. 39 – 71.

195. Rapp R.P., Watson E.B. Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crustal-mantle recycling // Journal of Petrology. 1995. V. 36. № 4.
P. 891 – 931.

196. Razumovskiy A.A., Khain E.V., Fedotova A.A. Correlation of the Neoproterozoic events at the Siberian margin of the PaleoAsian ocean: new structural evidences from the Tonkiy Mys peninsula, the North Baikal area / 33rd International Geological Congress. ASI06 PreMesozoic accretionary tectonics in Central Asia // Oslo. 2008. ASI06326P.

197. Rios S., Salje E.K.H., Zhang M., Ewing R.C. Amorphization in zircon: evidence for direct impact damage // Journal of Physics: Condensed Matter. 2000. V. 12. P. 2401 – 2412.

198. Skuzovatov S., Shatsky V. & Wang K.L. Continental subduction during arcmicrocontinent collision in the southern Siberian craton: Constraints on protoliths and metamorphic evolution of the North Muya complex eclogites (Eastern Siberia) // Lithos. 2019. V. 342 - 343. P. 76 - 96.

199. Shatsky V.S., Malkovets V.G., Belousova E.A., Skuzovatov S.Yu. Evolution history of the Neoproterozoic eclogites-bearing complex of the Muya dome (Central Asian Orogenic Belt): constraints from zircon U-Pb age, Hf and whole-rock Nd isotopes // Precambrian Research. 2015. V. 261. P. 1 - 11.

200. Stacey S. and Kramers J.D. Approximation of terrestrial lead isotope evolution by a twostage model // Earth and Planetary Science Letters. 1975. V. 26. P. 207 – 221.

201. Sun S.-S. and McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London. Special Publications. 1989. V. 42. P. 313 – 345.

202. Watson E.B., Cherniak D.J., Hanchar J.M., Harrison T.M., Wark D.A. The incorporation of Pb into zircon // Chemical Geology. 1997. V. 141. P. 19 – 31.

203. Watson E. B., Wark D. A., Thomas J. B. Crystallization thermometers for zircon and rutile // Contributions to Mineralogy and Petrology. 2006. V. 151. № 4. P. 413 – 433.

204. Wells P.R.A. Pyroxene thermometry in simple and complex systems // Contributions to Mineralogy and Petrology. 1977. V. 62. P. 129 – 139.

205. Wiedenbeck M., Alle P., Corfu F., Griffin W.L., Meier M., Oberli F., Von Quadt A., Roddick J.C., Spiegel W. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses // Geostandards Newsletter. 1995. V. 19. P. 1 – 23.

206. Williams I.S. U–Th–Pb geochronology by ion microprobe // Reviews in Economic Geology. 1998. V. 7. P. 1 – 35.

207. Wood B.J., Banno S. Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems // Contributions to Mineralogy and Petrology. 1973.
V. 42. P. 109 – 124.

208. Van Achterbergh E., Ryanm C.G., Griffin W.L. GLITTER: Online interactive data reduction for the laser ablation ICPMS microprobe // Proceedings of the 9th V.M. Goldschmidt Conference. 1999. Cambridge, Massachusetts. 305p.

209. Vigneresse J.L., Barbey P., Guney M. Rheological transitions during partial melting and crystallization with applications to felsic magma segregation and transfer // Journal of Petrology. 1996. V. 57. P. 1579 – 1600.

210. Zhang M., Salje E.K.H. Infrared spectroscopic analysis of zircon: Radiation damage and the metamict state // Journal of Physics: Condensed Matter. 2001. V.13. P. 3057 – 3072.

Приложение

Таблица 1. Содержание главных породообразующих элементов и элементов-примесей в гранулитах Кичерской зоны (двупироксеновые гранулиты основного состава (для краткости – "основные гранулиты"), двуполевошпатовые двупироксеновые гранулиты с кварцем ("чарнокитоиды") и их регресивноизменённые разновидности (апогранулитовые слюдяные или двуслюдяные двуполевошпатовые гнейсы ("апогранулитовые или апочарнокитовые гнейсы"), двупироксеновые гранулиты среднего состава ("эндербито-гнейсы")

			Основн	ные гран	іулиты				Двупол	евошпа	говые гра	анулиты]	Плагиог	ранулить	I	Апо	ранули	товые гн	ейсы
Образец /Компонент	SB09	SB07	AB-	AB-	SB07	SB09						SB09	SB09		SB09			SB09		SB07	
, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	4Γ	13Б	18	19	12A	8Б	2889	2951	2821	2816	2905-4	4Б	20A	AB-2	16Б	2883-1	2914	18Б	2906	12B	2904
SiO ₂	45.80	47.16	50.11	50.75	47.22	47.55	46.77	56.27	57.17	59.87	57.66	60.68	63.70	54.31	60.89	61.22	63.83	74.28	75.57	75.64	75.77
TiO ₂	2.21	2.04	2.54	2.22	1.84	2.07	2.08	1.42	1.29	0.61	1.23	0.40	0.57	0.93	0.91	0.72	0.78	0.16	0.29	0.28	0.22
Al ₂ O ₃	15.88	17.88	17.64	17.36	17.22	15.34	16.96	18.31	18.17	20.46	18.55	20.62	15.47	18.98	17.55	16.20	15.61	12.65	11.90	12.75	12.19
Fe ₂ O ₃	4.79	4.20	4.58	4.06	4.28	4.27	11.80	7.51	7.33	3.46	6.51	3.02	3.80	4.88	6.92	3.00	3.83	1.44	0.91	1.22	1.17
FeO	7.51	6.45	5.65	6.62	6.49	7.36	_	-	_	_	_	1.04	0.88	3.76	_	3.56	2.28	0.65	0.92	0.31	0.42
MnO	0.17	0.17	0.17	0.20	0.18	0.17	0.16	0.13	0.12	0.06	0.13	0.07	0.08	0.17	0.16	0.12	0.16	0.01	0.02	0.02	0.02
MgO	9.07	6.47	4.60	4.02	6.49	7.78	8.07	1.75	1.40	0.83	1.34	0.89	3.23	3.05	1.83	2.72	2.30	0.65	0.65	0.40	0.66
CaO	8.72	10.82	7.81	7.87	11.09	8.67	8.95	4.22	3.49	3.73	3.30	5.67	4.23	8.80	5.79	7.08	4.86	0.41	0.99	0.53	0.96
Na ₂ O	2.93	3.33	4.01	4.15	3.28	2.95	3.01	5.17	4.83	5.70	4.92	5.62	4.00	3.56	4.72	3.34	4.08	2.82	2.82	3.48	3.13
K ₂ O	0.86	0.42	1.58	1.06	0.54	1.96	0.88	4.16	4.41	3.78	4.75	1.47	2.75	0.80	0.78	1.17	1.11	6.59	5.47	5.24	5.14
$Na_2O + K_2O$	3.79	3.75	5.59	5.21	3.82	4.90	3.89	9.33	9.24	9.48	9.67	7.08	6.75	4.36	5.49	4.51	5.19	9.41	8.29	8.72	8.27
ASI	0.42	0.39	0.48	0.47	0.37	0.40	0.44	0.65	0.71	0.76	0.73	0.65	0.62	0.49	0.59	0.50	0.61	0.95	0.84	0.96	0.86
P_2O_5	0.35	0.40	0.58	0.97	0.41	0.38	0.21	0.45	0.31	0.09	0.350	0.17	0.18	0.34	0.218	0.22	0.25	0.03	0.04	0.04	0.04
п.п.п	0.69	0.27	0.10	0.00	0.44	0.70	0.77	0.16	1.11	1.35	0.62	0.25	1.01	-	0.1	0.24	0.68	0.23	0.30	0.34	0.23
Сумма	98.96	99.61	99.37	99.27	99.48	99.19	99.70	99.79	99.63	99.95	99.4	99.89	99.90	99.58	99.9	99.60	99.75	99.93	99.89	100.25	99.95
Be	1.3	0.542	2.37	-	1.28	-	1.32	—	1.10	2.61	0.866	2.04	1.38	0.995	1.37	0.961	1.5	-	1.68	1.39	1.68
Ti	12589	10858	13837	-	10100	-	11719	-	7334	2755	7505	1914	2508	4924	4687	3733	4424	-	923	1576	923
V	239	184	225	—	246	-	161	—	32.6	36.6	46.5	32.1	58.0	163	55.5	124	54.1	-	7.52	11.6	7.52
Cr	30.9	152	11.6	_	158	-	32.7	-	1.33	4.01	15.2	29.1	89.7	26	0.6	43	28.9	-	18.3	32.4	18.3

			Основа	ные гра	нулиты				Двупол	евошпа	говые гра	нулиты			Плагиог	ранулить	I	Апо	гранули	товые гн	ейсы
Образец /Компонент	SB09	SB07	AB-	AB-	SB07	SB09						SB09	SB09		SB09			SB09		SB07	
,110,1110,110,110	4Γ	13Б	18	19	12A	8Б	2889	2951	2821	2816	2905-4	4Б	20A	AB-2	16Б	2883-1	2914	18Б	2906	12B	2904
Mn	1286	1197	1166	—	1268	—	1153	_	819	417	1004	467	511	1147	1160	789	1277	-	120	165	120
Fe	89263	81559	74662	-	80138	-	78690	—	49599	23815	41116	25431	29450	61903	46424	46186	44064	-	6442	10520	6442
Со	50.6	47.3	23.9	-	46.4	-	50.5	—	11.1	5.6	8.7	6.1	13.5	24.6	10.1	18.1	9.0	-	1.49	1.99	1.49
Zn	84.4	63.4	86.8	-	78	-	80.6	—	61.6	38.8	90.2	43.3	46.8	75.4	68.2	60.2	66.7	-	16.4	22.9	16.4
Ga	20.2	18.6	24.9	-	19.9	_	20.0	—	22.9	24.9	24.5	25.8	19.1	20.6	18.8	18.1	18.1	-	16.3	18.1	16.3
Rb	11.1	0.589	20.6	-	3.4	-	10.7	_	26.4	38.6	42.7	5.35	54.1	3.11	2.58	3.89	11.5	-	117	107	117
Sr	423	538	544	-	542	-	435	—	467	489	590	724	589	610	378	518	331	-	32.5	43.5	32.5
Y	28.2	23.7	41.4	-	29.2	_	22.3	—	32.0	9.93	28.6	6.9	15.7	18.8	37.4	15.4	38.7	-	12.1	25.4	12.1
Zr	190	60.7	422	-	186	-	192	—	3068	314	1756	335	147	146	269	117	177	-	190	157	190
Nb	8.4	5.16	15.9	_	7.2	—	81.3	—	20.7	6.37	17.7	2.31	5.80	3.18	4.46	2.72	5.41	-	14.2	4.16	14.2
Sn	1.14	0.957	1.97	-	1.4	-	1.32	—	0.95	1.08	1.84	0.563	0.66	1.19	1.2	1.09	1.26	-	0.59	10.1	0.6
Cs	0.31	0.05	0.26	_	0.02	—	0.22	—	0.15	0.09	0.97	0.44	0.35	0.08	2.42	0.49	0.08	-	0.11	0.11	0.11
Ba	216	184	638	_	198	—	110	_	3448	1262	3710	520	696	414	375	505	515	-	162	310	162
La	17.2	12.1	37.7	_	17.4	—	14.8	—	34.6	18.8	30.2	20.5	26.3	15.9	23.1	15.7	21.7	-	33.7	26.8	33.7
Ce	41.1	30.4	87.1	_	41.7	—	35.6	—	71.3	31.7	60.5	32.9	66.1	33.8	49.8	31.9	48.9	-	61.1	58.1	61.1
Pr	5.56	4.38	11.1	_	5.58	—	4.72	—	9.00	3.40	7.20	3.42	7.48	4.4	6.56	4.01	6.39	-	6.37	6.95	6.37
Nd	24.6	20.2	46.9	-	24.7	_	20.7	_	37.8	12.8	30.4	12.1	28.8	18.9	28.9	16.4	27.4	-	20.4	26.1	20.4
Sm	5.93	4.89	9.97	_	5.63	—	4.88	—	7.68	2.42	6.06	1.97	5.27	4.09	6.55	3.47	6.27	-	3.33	5.3	3.3
Eu	2	1.71	2.73	-	1.75	-	1.80	_	5.93	3.13	5.53	2.6	1.15	1.38	2.04	1.08	1.76	-	0.47	0.64	0.47
Gd	6.04	4.91	9.37	_	5.78	_	4.76	_	7.08	2.26	5.70	1.59	3.83	3.87	7.02	3.18	6.44	-	2.60	4.81	2.60
Tb	0.95	0.80	1.42	_	0.92	_	0.77	_	1.07	0.33	0.85	0.22	0.54	0.60	1.14	0.48	1.06	-	0.41	0.79	0.41
Dy	5.91	4.68	8.51	_	5.66	_	4.59	_	6.12	1.86	5.11	1.28	2.95	3.69	7.13	2.87	6.82	-	2.33	4.85	2.33
Но	1.2	0.98	1.7	_	1.18	_	0.94	_	1.33	0.39	1.07	0.28	0.58	0.77	1.54	0.59	1.51	-	0.48	1.01	0.48

Образец			Основі	ные гра	нулиты				Двупол	евошпа	товые гра	нулиты			Плагиог	ранулить	ы	Апо	гранули	товые гн	ейсы
Образец /Компонент	SB09	SB07	AB-	AB-	SB07	SB09						SB09	SB09		SB09			SB09		SB07	
	4Γ	13Б	18	19	12A	8Б	2889	2951	2821	2816	2905-4	4Б	20A	AB-2	16Б	2883-1	2914	18Б	2906	12B	2904
Er	3.19	2.65	4.69	_	3.17	_	2.53	_	3.78	1.08	3.08	0.829	1.52	2.16	4.25	1.7	4.4	-	1.32	2.82	1.32
Tm	0.469	0.373	0.664	-	0.464	-	0.355	—	0.583	0.162	0.465	0.125	0.229	0.32	0.649	0.265	0.71	—	0.193	0.413	0.193
Yb	2.91	2.30	4.12	-	2.88	-	2.20	—	3.85	1.08	3.17	0.881	0.962	2.05	4.01	1.66	4.43	—	1.10	2.48	1.10
Lu	0.442	0.335	0.616	-	0.441	-	0.325	—	0.658	0.169	0.571	0.164	0.204	0.311	0.612	0.252	0.676	—	0.176	0.353	0.176
Hf	4.17	1.98	8.23	_	3.66	_	4.32	—	38.6	7.46	34.0	6.06	3.37	3.1	5.22	2.37	3.65	-	5.63	4.03	5.63
Та	0.713	0.281	1.29	_	0.577	_	0.683	—	0.921	0.322	0.858	0.2	0.343	0.204	0.319	0.134	0.433	-	0.294	0.957	0.294
Th	0.808	_	1.27	-	0.276	-	0.917	—	0.284	0.398	0.272	0.364	4.49	0.297	0.182	0.172	0.442	—	11.1	3.79	11.1
U	0.246	-	0.568	-	0.081	-	0.438	—	0.396	0.408	0.357	0.246	0.597	0.059	0.09	0.04	0.092	-	1.12	1.03	1.12

						Oð	разец					
Компонент	2962	2963	2965	2810	SB07 10A	SB07 12Г	SB07 15A	SB07 1P4	SB07 2P16	SB07 2P17	SB098 Д	AB28
SiO ₂	74.51	75.16	70.88	74.15	71.9	68.44	74.69	72.49	73.91	65.01	71.15	64.22
TiO ₂	0.06	0.05	0.09	0.02	0.18	0.38	0.05	0.20	0.15	0.43	0.34	0.43
Al ₂ O ₃	14.5	14.5	20.46	17.12	15.24	15.7	15.7	13.82	13.5	16.9	13.87	16.65
Fe ₂ O ₃	0.41	1.17	0.32	0.09	1.68	3.24	0.54	1.94	0.87	3.08	2.82	3.97
MnO	0.01	0.02	0.01	0.05	0.03	0.04	0.02	0.06	0.03	0.05	0.03	0.061
MgO	0.07	0.09	0.10	0.10	0.68	1.69	0.10	0.60	0.80	2.55	1.06	1.79
CaO	0.87	0.93	1.07	1.34	2.8	5.16	0.48	2.11	1.93	5.03	2.45	4.6
Na ₂ O	3.80	4.13	6.31	5.64	4.25	3.90	7.93	4.21	4.03	4.76	3.26	4.08
K ₂ O	4.99	3.60	0.19	1.15	2.79	0.71	0.18	2.82	3.53	0.98	4.49	2.37
P_2O_5	0.03	0.01	0.072	0.025	0.06	0.10	0.02	0.07	0.07	0.15	0.09	0.201
П.П.П	0.53	0.34	0.42	0.27	0.40	0.65	0.48	0.74	0.35	1.06	0.46	1.3
Сумма	99.77	99.99	99.92	99.95	99.94	99.92	100.17	99.03	99.15	99.83	99.89	99.75
Be	_	_	_	_	0.849	0.979	_	0.696	1.35	0.886	1.10	
V	_	_	_	_	6.31	36.4	_	4.64	5.79	40.1	24.9	
Cr	10.6	_	13.7	6.9	31.6	24.8	_	25.5	41.4	42.8	34.6	61.8
Mn	_	_	_	_	133	236	_	410	216	331	201	
Со	_	_	_	_	1.55	6.76	_	2.01	1.22	9.49	4.16	
Zn	-	-	_	_	11.1	32.7	-	31.6	12.2	44.4	24.7	
Ga	-	-	_	_	17	17.8	-	17.1	15.1	18.2	13.1	
Rb	36.7	_	1.8	8.0	15.7	10.3	-	21.4	23.9	11.8	68.5	39.9
Sr	127	_	51	13	190	398	_	274	265	582	337	347
Y	0.66	—	1.78	2.15	3.57	4.36	-	6.66	6.83	4.28	6.41	6.24
Zr	78	_	94	7	138	65	_	122	26	64	161	168
Hf	3.39	_	3.38	0.90	3.07	1.36	-	3.37	0.9	1.52	3.39	4.30
Nb	0.99	_	3.74	7.83	2.72	1.25	_	6.04	2.55	1.77	2.05	5.95
Cs	0.56	_	0.08	0.14	0.12	0.23	-	0.09	0.19	0.07	0.35	0.51
Ba	544	—	90	12	304	191	-	881	1116	309	1285	783
La	0.68	_	1.11	0.80	33.10	9.23	_	23.90	4.16	8.57	14.10	11.75
Ce	0.96	_	2.34	0.85	65.40	17.30	_	47.40	8.65	17.80	44.50	25.59
Pr	0.43	_	0.57	0.37	7.15	2.03	_	4.95	0.93	1.99	2.73	3.01
Nd	0.57	_	1.46	0.47	25.30	7.71	_	17.30	3.56	7.68	8.87	11.29

Таблица 2. Содержание главных породообразующих элементов и элементов-примесей в породах тоналит-плагиогранит-лейкогранитного комплекса Кичерской зоны

						06	бразец					
Компонент	2962	2963	2965	2810	SB07 10A	SB07 12Г	SB07 15A	SB07 1P4	SB07 2P16	SB07 2P17	SB098 Д	AB28
Sm	0.22	_	0.41	0.23	3.81	1.45	-	2.79	0.86	1.54	1.51	2.07
Eu	0.45	—	0.33	0.27	1.24	0.45	-	0.77	0.43	0.56	0.58	0.84
Gd	0.19	_	0.39	0.31	2.07	1.15	-	1.86	0.88	1.26	1.25	1.85
Tb	0.25	-	0.25	0.25	0.21	0.16	-	0.25	0.17	0.16	0.19	0.43
Dy	0.20	_	0.45	0.43	0.88	0.84	_	1.32	1.08	0.87	1.06	1.39
Но	0.08	—	0.12	0.12	0.15	0.17	-	0.26	0.24	0.16	0.24	0.27
Er	0.27	—	0.39	0.36	0.41	0.42	-	0.71	0.71	0.43	0.82	0.84
Tm	-	—	_	I	0.06	0.06	-	0.11	0.13	0.06	0.14	_
Yb	0.18	_	0.34	0.27	0.43	0.4	_	0.76	0.88	0.42	0.99	0.70
Lu	-	_	-	I	0.09	0.07	-	0.14	0.15	0.07	0.19	_
Та	0.09	—	0.62	0.54	0.091	0.2	-	0.278	0.805	0.318	0.153	0.51
Th	-	—	_		2.1	1.2	-	1.5	0.8	1.1	9.0	_
U	-	_	-	١	0.17	0.31	-	0.28	0.30	0.39	0.86	_
Sr/Y	192	—	29	6	53	91	-	41	39	136	53	56
(La/Lu) _N		_	-	١	39	14	_	18	3	13	8	_
Yb _N	1.6	_	1.0	1.6	5.6	3.1	_	5	2.4	3.4	3.4	1.3
Eu/Eu*	3.1	_	6.7	3.1	1.3	1.1	_	1.0	1.5	1.2	1.3	5.5
ASI	0.98	1.03	1.41	1.11	0.75	0.60	1.05	0.78	0.77	0.62	0.72	0.64

Примечание. Содержания РЗЭ в пробах нормированы на их содержания в хондрите по (Sun&McDonough, 1988).

Еи аномалия рассчитана по формуле:

 $(Eu_{oбразец}/Eu_{xoндрит})/\sqrt{[(Sm_{oбразец}/Sm_{xoндрит}) \times (Gd_{oбразец}/Gd_{xoндрит})]}.$ ASI = Al₂O3/(CaO + Na₂O + K₂O) (мол. кол-ва).

Таблица 3. Результаты исследований Rb-Sr и Sm-Nd изотопных систем в породах Кичерской зоны (1 – троктолиты Тонкого мыса, 2 – чарнокитоиды эндербит-гранулитового комплекса, 3 – тоналит-плагиогранит-лейкогранитный комплекс, 4 – эндербито-гнейсы). Погрешность измерения Rb-Sr изотопного отношения не превышает 1% от величины отношения. Погрешность измерения Sm-Nd изотопного отношения не превышает 0.1% от величины отношения

	Проба	Название породы	Rb,	Sr,	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr	±2σ	Sm,	Nd,	¹⁴⁷ Sm/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	±2σ
	SB072P0	Троктоцит	1 3	668 Q	0.0054	0 702038	0.000008	03	1 Q	0.1049	0.51253	0.00001
	SB071P20A	Троктолит	1.5	000.9	0.0034	0.702938	0.000008	0.3	1.9	0.1049	0.51255	0.00001
	SD071120A	Троктолит	0.9	930.0 612.0	0.0028	0.702931	0.000011	0.5	1.0	0.1120	0.51220	0.00001
1	SD0701	Троктолит	1.5	575.0	0.0009	0.703011	0.000011	5.5	14.0	0.1430	0.51207	0.00001
1	SD0/1F13A SD072D11	Троктолит	0.7	1597	0.0030	0.703203	0.000007	0.4	2.0	0.1162	0.51250	0.00001
	SD072F11	Троктолит	0.0	150.7	0.0117	0.703372	0.000003	0.0	2.0	0.1778	0.51279	0.00000
	SB0/IA	Гроктолит	0.7	150.7	0.0136	0.703058	0.000007	0.2	0.9	0.1650	0.51272	0.00001
	SB0945	Эндербит	10.5	734.9	0.0414	0.703290	0.000020	1.9	12.1	0.0964	0.51234	0.00001
	2821	Эндербит	26.5	541.1	0.1417	0.704536	0.000007	6.9	34.2	0.1219	0.51249	0.00001
	2816	Чарнокитоид	45.6	684.2	0.1929	0.705249	0.000010	2.8	15.1	0.1133	0.51245	0.00001
2	2906	Гранито-гнейс	99.2	92.0	3.1285	0.731437	0.000014	5.1	32.1	0.0969	0.51228	0.00002
	2905-4	Чарнокитоид	31.5	681.7	0.1337	0.704498	0.000004	7.3	35.5	0.1250	0.51247	0.00000
	2951	Чарнокитоид	28.3	561.8	0.1455	0.704611	0.000006	8.1	37.0	0.1317	0.51253	0.00000
	SB0712B	Гранито-гнейс	109.9	40.6	7.8742	0.770167	0.000006	4.2	20.7	0.1219	0.51250	0.00001
	SB072P17	Bt гранит	10.8	585.8	0.0532	0.703280	0.000010	1.7	9.5	0.1093	0.51266	0.00002
	SB072P16	Лейкогранит	23.3	277.6	0.2430	0.704976	0.000005	2.4	16.7	0.0879	0.51255	0.00002
	SB0712Γ	Плагиогранит	10.0	457.0	0.0631	0.703395	0.000019	0.9	4.8	0.1153	0.51256	0.00001
3	SB098Д	Лейкогранит	71.0	344.5	0.5964	0.708303	0.000013	1.4	8.5	0.1013	0.51243	0.00001
	2962	Гранит	60.6	397.7	0.4404	0.703086	0.000005	1.3	5.8	0.1319	0.51258	0.00000
	2963	Гранит	79.8	264.5	0.8731	0.711375	0.000006	0.5	2.0	0.1654	0.51282	0.00003
	AB28	Гранит	50.8	819.8	0.1792	0.705159	0.000007	9.4	47.2	0.1204	0.51241	0.00001
	AB-2	Эндербито-гнейс	1.3	610.1	0.0063	0.706860	0.000004	3.8	17.6	0.1311	0.51194	0.00000
	2914	Эндербито-гнейс	9.8	330.1	0.0856	0.707822	0.000006	5.8	26.1	0.1352	0.51196	0.00001
4	SB09165	Эндербито-гнейс	1.5	374.5	0.0112	0.707101	0.000015	6.5	28.1	0.1394	0.51200	0.00001
1	2883-11	Эндербито-гнейс	2.4	518.2	0.0137	0.707615	0.000012	2.8	13.7	0.1221	0.51187	0.00002
1	2883-1	Изм. эндербито-гнейс	2.2	516.9	0.0124	0.707728	0.000013	3.3	15.8	0.1261	0.51187	0.00001

		Изото	пные отно	шения и по	лученные	по ним возра	асты	
Проба	Образец 91500	$\begin{array}{r} ^{207} Pb/^{206} Pb \\ \pm 2\sigma \end{array}$	возраст, млн лет	$\begin{array}{c} {}^{207}\text{Pb}/{}^{235}\text{U} \\ \pm 2\sigma \end{array}$	возраст, млн лет	$^{206}Pb/^{238}U \\ \pm 2\sigma$	возраст, млн лет	Rho
	(1)	0.0750±03	1067	1.847±23	1062	0.180±2	1060	
Std*	(2)	0.0750±01	1066	1.845±12	1062	0.180±1	1060	
	210	0.0771±02	1124	1.900±59	1081	0.179±5	1060	0.69
	211	0.0728±27	1007	1.791±72	1042	0.179±5	1059	0.65
2821	212	0 074±19	1041	1.832 ± 59	1057	0.180±5	1065	0.70
	212	0.0764+22	1105	1 890+66	1077	0.179+5	1064	0.60
	213	0.0751 ± 17	1070	1.070±00	1077	0.179 ± 5	1062	0.60
	294	0.0731 ± 17	1070	1.034±30	1003	0.179 ± 3	1002	0.09
	295	0.0/44±1/	1051	1.83/±50	1059	0.1/9±5	1062	0.69
SB07	296	0.0747±16	1062	1.832±48	1057	0.178±5	1055	0.70
12B	297	0.0745±17	1055	1.832±50	1057	0.178±5	1058	0.70
	298	0.0739±16	1038	1.853 ± 50	1065	0.182±5	1078	0.70
	299	0.0744±17	1051	1.827±50	1055	0.178±5	1057	0.70
	300	0.0752±17	1073	1.857±48	1066	0.179±4	1063	0.69
	301	0.0758±18	1089	1.882±49	1075	0.180±4	1068	0.68
2816	302	0.0756±17	1085	1.855±47	1065	0.178±4	1056	0.69
2010	303	0.0748±17	1064	1.861±49	1067	0.180±4	1069	0.69
	304	0.0755±17	1083	1.870±48	1070	0.180±4	1065	0.69
	305	0.0749±17	1065	1.836±48	1058	0.178±4	1056	0.69
	512	0.0749±19	1066	1.834±40	1058	0.178±3	1054	0.61
	513	0.0742±19	1046	1.810±42	1049	0.177±3	1050	0.61
	526	0.0752±18	1073	1.846±42	1062	0.178±3	1057	0.61
2014	527	0.0763±19	1103	1.877±42	1073	0.178±3	1058	0.61
2914	823	0.0755±17	1081	1.846±40	1062	0.177±3	1053	0.65
	824	0.0741±17	1044	1.815±40	1051	0.178±3	1054	0.64
	825	0.0746±16	1057	1.822±45	1053	0.177±4	1052	0.69
	826	0.0749±16	1065	1.815±42	1051	0.176±4	1044	0.67
	811	0.0734±19	1025	1.830±44	1056	0.181±3	1071	0.61
	812	0.0763±22	1103	1.861±46	1067	0.177±3	1050	0.59
	813	0.0746±19	1059	1.809±42	1049	0.176±3	1044	0.63
	814	0.0751±19	1070	1.817±42	1052	0.176±3	1043	0.62
4.0.2	815	0.0756±18	1085	1.839±39	1059	0.176±3	1047	0.63
AB2	816	0.0749±19	1064	1.820±41	1053	0.176±3	1047	0.62
	817	0.0742±16	1047	1.801±47	1046	0.176±4	1045	0.70
	818	0.0745±17	1055	1.804±46	1047	0.176±4	1043	0.68
	819	0.0746±16	1057	1.780±44	1038	0.173±4	1029	0.69
	820	0.0755±17	1081	1.795±43	1044	0.173±4	1026	0.67

Таблица 4. Результаты измерения стандартных образцов 91500 в ходе работы и опубликованные данные (Std) (Wiedenbeck et al., 1995)

	0.5	Изотс	опные отно	ошения и по.	лученные і	по ним возрас	ты	
Проба	Образец 91500	$\begin{array}{c} ^{207} Pb / ^{206} Pb \\ \pm 2\sigma \end{array}$	возраст, млн лет	$^{207}Pb/^{235}U$ ±2 σ	возраст, млн лет	²⁰⁶ Pb/ ²³⁸ U ±2σ	возраст, млн лет	Rho
	829	0.0753±17	1075	1.812±41	1050	0.175±4	1038	0.67
	830	0.0748±17	1062	1.825±42	1054	0.177±4	1051	0.65
2006	831	0.0754±16	1078	1.877±41	1073	0.181±4	1071	0.66
2900	832	0.0758±17	1090	1.874±42	1072	0.179±4	1063	0.65
	833	0.0743±16	1049	1.821±44	1053	0.178±4	1055	0.69
	834	0.0748±17	1064	1.851±43	1064	0.179±4	1064	0.66
	514	0.0755±18	1081	1.854±39	1065	0.178±3	1057	0.81
	515	0.0734±19	1025	1.860±43	1067	0.184±3	1088	0.76
SB07	516	0.0751±18	1071	1.839±39	1059	0.178±3	1054	0.81
1P4	517	0.0746±19	1058	1.875±42	1072	0.182±3	1079	0.77
	518	0.0750±18	1068	1.811±38	1049	0.175±3	1040	0.79
	519	0.0748±19	1064	1.812±41	1050	0.176±3	1043	0.75
	520	0.0736±18	1030	1.822±38	1053	0.180±3	1065	0.61
	521	0.0737±18	1034	1.805±40	1047	0.178±3	1054	0.61
SB07	522	0.0740±18	1042	1.854±40	1065	0.182±3	1076	0.62
2P17	523	0.0744±18	1053	1.833±41	1057	0.179±3	1060	0.62
	524	0.0747±18	1059	1.843±39	1061	0.179±3	1062	0.62
	525	0.0743±18	1051	1.794±40	1043	0.175±3	1040	0.62

Проба (т. на рис. 2), коорд.	Цвет	Форма	Кудл	Зональность	Наличие ядер	Кол-во иссл. зёрен	Th, ppm	U, ppm	Th/U
2821 (т. 7) N55°24.865' E109°12.609'	Прозрачные, до светло- коричневого	Призматические, с пирамидальными вершинами до длиннопризматических	1:2-1:5	Осцилляторная секториальная	Без ядер	48+11	15 – 240	42 – 339	0.35 – 0.72
2816 (т. 12) N55°23.218' E109°12.992'	Розовато- коричневые, бурые	Короткопризматические со сглаженными вершинами	1:2-1:4	Осцилляторная. Есть "заплатки" и "заливы"	Без ядер	42	39 – 773	174 – 982	0.06 – 0.83
2906 (т. 11) N55°23.719' E109°13.387'	Прозрачные	Округлые, короткопризматические со сглаженными гранями и вершинами	1:2	Осцилляторная	Без ядер	42	128 – 5155	269 – 4278	0.19 – 1.86
SB0712B (т. 5) N55°25.825' E109°10.838'	Прозрачные	Короткопризматические со сглаженными вершинами; "овальные"	1:2-1:3	Осцилляторная фрагментарно Есть пятна однородного циркона, "заплатки" и "заливы"	Без ядер	42	105 – 546	212 – 683	0.28 – 1.17
2914 (т. 14) N55°22.933' E109°11.177'	Прозрачные до светло- коричневого	Несколько разновидностей: длиннопризматические со сглаженными гранями и пирамидальными вершинами; округлые и "овальные"	Окр., 1:4	В призматических – осцилляторная. В некоторых зёрнах или ядрах присутствуют осцилляторная и полосчатая. В округлых –секториальная.	Есть ядра	56+14	3 - 350	20 – 354	0.09 – 1.23
АВ2 (т. 18) N55°22.813' E109°04.362'	Прозрачные до светло- коричневого	Несколько разновидностей: длиннопризматические со сглаженными гранями; округлые и "овальные" с множеством граней	Окр., 1:3-1:5	В призматических – осцилляторная. В изометричных – секториальная.	Есть ядра	84+18	37 – 246 (*), 19 – 73 (**)	24 – 233 (*), 23 – 65 (**)	0.09 – 2.03
SB071P4 (т. 3) N55°27.028' E109°11.418'	Прозрачные, до жёлто- коричневого	Короткопризматические со сглаженными гранями и вершинами	1:2-1:4	Осцилляторная	Есть ядра	42	4 – 221	10 – 1619	0.33 – 0.88
SB072P17 (т. 2) N55°27.018' E109°12.078'	Коричневатые	Длиннопризматические, игольчатые, выделены в основном обломки кристаллов. Иногда видны пирамидальные вершины	1:4-1:7	Осцилляторная	Без ядер	42	16 – 1432	43 – 970	0.18 – 1.48

Таблица 5. Данные о строении и составе изученного циркона из чарнокитоидов и апочарнокитовых гнейсов, эндербито-гнейсов и гранитоидов Кичерской зоны, где (*) – ядро зерна, (**) – оболочки, метаморфические зёрна циркона

№ зерна	Р	Fe	Sr	Y	Nb	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Yb	Lu	Hf	Та	Th	U
214	155	-	0.79	1336	2.5	0.03	5.6	0.23	4.4	9.4	1.3	41	13	152	51	207	444	62	7273	1.02	39	56
215	188	Ι	0.83	1641	2.5	0.05	5.9	0.41	6.8	11.5	1.9	51	17	184	63	251	555	76	7063	1.05	47	62
218	184	160.1	0.98	1429	2.1	0.14	5.9	0.40	5.4	9.5	1.9	43	14	156	53	211	445	67	7228	0.82	39	47
221	196	—	0.51	672	2.2	0.01	4.4	0.12	1.6	3.5	0.8	18	6	71	25	104	244	37	7192	0.92	22	34
235	218	-	1.08	2177	4.3	0.07	7.6	0.50	7.6	13.7	1.8	64	22	243	86	340	749	102	7332	1.63	79	105
243	153	-	0.71	1283	—	0.04	5.9	0.26	4.4	8.2	1.0	38	13	142	50	203	460	62	7681	1.24	39	61
246	295	-	0.89	1413	7.2	0.02	10.9	0.23	4.2	7.8	0.7	34	13	148	54	223	565	77	7169	3.06	108	162
250	190	_	0.94	1684	2.9	0.03	6.5	0.41	7.1	12.6	1.8	53	17	191	67	263	604	80	7205	1.32	52	73
256	200	16.1	0.77	1113	4.8	0.07	6.6	0.17	3.1	5.9	0.8	28	10	117	42	174	425	62	7639	1.85	42	80
259	203	Ι	0.40	780	2.4	0.01	4.2	0.13	2.4	4.3	0.8	20	7	78	29	120	283	43	7180	1.04	24	40
264	171	-	0.46	678	2.3	0.01	3.7	0.08	1.3	3.4	0.7	17	6	70	26	107	249	38	7243	1.00	16	26
267	173	-	0.95	1587	2.3	0.08	5.8	0.49	7.1	11.0	1.9	46	15	171	61	244	527	76	7108	0.95	45	59
275	195	-	0.63	1069	2.3	0.03	5.3	0.22	3.7	6.7	1.4	31	10	116	41	166	386	56	7049	1.10	29	43
277	239	13.8	1.32	2293	6.3	0.20	11.4	0.48	8.6	18.3	1.5	78	25	285	96	381	844	107	7668	2.14	103	142
281	310	_	1.42	2253	5.0	0.38	9.3	0.82	10.1	16.1	1.8	72	23	255	86	348	759	103	7364	1.81	90	113
285	183	_	0.90	1736	3.2	0.06	7.0	0.43	6.9	11.4	1.8	52	17	190	65	267	575	84	7459	1.23	55	71
286	169	_	0.98	1400	1.9	0.03	5.9	0.35	6.0	10.1	1.9	43	13	152	53	209	453	66	7348	0.79	38	47
287	157	_	0.90	1433	2.5	1.81	8.7	0.67	6.5	8.9	1.1	42	14	158	54	214	462	68	7673	1.01	41	56
289	206	_	0.53	669	2.5	0.02	4.7	0.13	1.9	3.8	0.8	17	6	70	25	107	250	37	7431	0.83	22	35
300	169	_	0.82	1566	2.5	0.06	5.4	0.36	6.2	10.1	1.6	45	15	169	59	235	513	73	7198	0.97	43	57
303	253	—	1.31	1992	6.2	0.04	9.2	0.41	6.0	11.0	1.3	56	18	215	76	305	681	96	7423	2.58	103	140

Таблица 6. Редкие элементы (ppm) в зёрнах циркона из эндербитов в пробе 2821

№ зерна	Р	Fe	Sr	Y	Nb	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu	Hf	Та	Th	U
1-2	442	30	1.2	2814	4.1	0.04	49.0	0.37	9.2	25.8	14	136	39	407	137	540	969	183	7639	0.52	384	392
1-6	348	-	1.19	2517	3.0	0.06	30.0	0.2	4.4	13.6	9	85	26	271	95	415	767	159	7892	0.52	208	287
1-12	525	—	1.32	2585	4.3	0.04	56.7	0.422	9.1	28.7	17	165	44	478	158	618	1119	219	7499	0.63	448	448
1-14	562	89	1.21	2800	5.0	0.09	67.6	0.564	12.2	33.7	20	222	59	597	197	762	1255	237	7574	0.79	632	593
1-17	468	27	1.47	1766	4.3	0.05	54.4	0.413	10.2	31.0	17	169	48	491	162	628	1015	196	7779	0.59	471	453
1-22	412	—	1.23	1333	8.6	0.04	122.2	0.403	11.5	36.0	19	220	63	626	189	671	931	157	9599	1.21	792	722
1-24	316	—	1.09	2320	4.5	0.03	52.2	0.355	7.9	22.9	13	129	36	358	110	413	710	135	8352	0.57	376	388
1-38	136	—	0.57	1218	9.3	0.04	27.6	0.266	3.7	7.8	0	35	12	128	44	194	335	60	6494	2.76	119	156
2-42	371	—	1.14	3140	5.2	0.04	60.1	0.247	5.4	16.6	11	123	36	381	126	489	829	157	8165	0.74	359	422
2-47	600	168	1.89	1901	6.6	0.07	98.3	0.592	13.0	37.1	22	255	74	771	257	934	1488	266	7870	0.80	919	714
2-56	300	183	1.54	2153	9.0	0.27	94.6	0.176	4.2	12.1	9	109	33	394	146	613	1098	210	10331	1.84	458	659
2-63	477	46	1.25	1706	4.8	0.03	58.3	0.432	10.3	27.2	17	185	55	548	188	730	1198	232	7257	0.58	585	515
2-69	399	_	1.32	2245	5.0	0.03	62.8	0.413	11.3	29.6	17	175	49	498	156	578	909	169	8989	0.70	515	471
2-77	480	27	1.32	2038	5.5	0.05	72.6	0.554	13.7	38.0	22	209	56	561	178	682	1078	205	7793	0.64	619	567

Таблица 7. Редкие элементы (ppm) в зёрнах циркона из тоналитов в пробе SB072P17

		И	зотопные	е отношен	ния				Возраст,	млн лет	1		Th,	U,
л∘ зерна	²⁰⁷ Pb/ ²⁰	⁾⁶ Pb±1σ	²⁰⁷ Pb/ ²³⁵	U±1σ	²⁰⁶ Pb/ ²³⁸	U±1σ	²⁰⁷ Pb/ ²⁰	⁶ Pb±2σ	²⁰⁷ Pb/ ²³⁵	U±2σ	²⁰⁶ Pb/ ²³⁸	U±2σ	ppm	ppm
214	0.0615	0.0010	0.8359	0.0156	0.0985	0.0014	658	72	606	16	617	17	32	64
215	0.0605	0.0009	0.8256	0.0140	0.0989	0.0014	622	63	608	16	611	15	61	99
218	0.0614	0.0011	0.8295	0.0157	0.0979	0.0014	654	74	602	16	613	17	30	54
221	0.0612	0.0008	0.8208	0.0127	0.0973	0.0013	645	55	599	16	609	14	176	244
222	0.0809	0.0012	1.1239	0.0185	0.1008	0.0014	1218	56	619	16	765	18	62	97
223	0.0608	0.0008	0.8304	0.0134	0.099	0.0014	633	59	609	16	614	15	108	165
226	0.0619	0.0008	0.835	0.0131	0.0979	0.0013	669	57	602	16	616	14	195	281
229	0.0601	0.0009	0.8174	0.0139	0.0986	0.0014	608	64	606	16	607	15	65	111
232	0.06	0.0011	0.8173	0.0172	0.0988	0.0015	604	82	607	18	607	19	105	169
234a	0.0605	0.0012	0.8260	0.0182	0.0990	0.0016	621	86	609	18	611	20	83	141
234b	0.0608	0.0011	0.8198	0.0160	0.0979	0.0014	631	77	602	17	608	18	21	50
235	0.0617	0.0008	0.8355	0.0133	0.0982	0.0014	663	57	604	16	617	15	148	220
239	0.0829	0.0013	1.1434	0.0202	0.1000	0.0014	1266	61	615	17	774	19	41	64
240	0.0644	0.0010	0.8854	0.0153	0.0997	0.0014	756	64	613	16	644	16	60	102
242	0.0603	0.0009	0.8297	0.0144	0.0998	0.0014	613	64	614	17	614	16	62	104
243	0.0595	0.0012	0.7999	0.0179	0.0975	0.0016	586	88	600	18	597	20	126	197
244	0.0615	0.0008	0.8245	0.0133	0.0973	0.0014	655	57	599	16	611	15	174	264
246	0.0601	0.0008	0.8065	0.0128	0.0973	0.0014	609	57	598	16	601	14	240	339
250	0.0608	0.0010	0.8314	0.0150	0.0992	0.0014	631	68	610	17	614	16	53	90
255	0.0612	0.0008	0.8245	0.0136	0.0977	0.0014	647	59	601	16	611	15	144	210

Таблица 8. Результаты исследования U-Pb изотопной системы методом LA-ICP-MS в цирконах из эндербитов в пробе 2821

		И	зотопные	е отношен	ния				Возраст,	млн лет			Th,	U.
л⁰ зерна	²⁰⁷ Pb/ ²⁰	⁰⁶ Pb±1σ	²⁰⁷ Pb/ ²³⁵	U±1σ	²⁰⁶ Pb/ ²³⁸	U±1σ	²⁰⁷ Pb/ ²⁰	⁶ Pb±2σ	²⁰⁷ Pb/ ²³⁵	U±2σ	²⁰⁶ Pb/ ²³⁸	³ U±2σ	ppm	ppm
256	0.0593	0.0009	0.7856	0.0138	0.0961	0.0014	577	66	592	16	589	16	57	120
257	0.0594	0.0012	0.7940	0.0171	0.0969	0.0015	583	85	596	17	593	19	33	71
259	0.0614	0.0011	0.8222	0.0159	0.0972	0.0014	652	74	598	17	609	18	37	63
261	0.0606	0.0010	0.8274	0.0152	0.099	0.0014	625	70	609	17	612	17	65	106
262	0.0582	0.0015	0.8062	0.0218	0.1005	0.0017	536	114	618	20	600	24	31	56
263	0.0609	0.0012	0.8552	0.0196	0.1020	0.0017	633	88	626	20	628	21	125	195
264	0.0615	0.0010	0.8638	0.0163	0.1019	0.0015	656	71	626	18	632	18	60	96
267	0.0600	0.0011	0.8234	0.0165	0.0995	0.0015	604	78	611	18	610	18	31	53
270	0.0619	0.0009	0.8523	0.0150	0.0998	0.0015	671	64	614	17	626	16	62	100
274	0.0608	0.0009	0.8335	0.0148	0.0995	0.0015	631	65	611	17	616	16	68	104
275	0.0604	0.0010	0.8171	0.0153	0.0981	0.0015	619	70	603	17	606	17	47	77
277	0.0589	0.0010	0.8049	0.0152	0.0992	0.0015	562	72	610	17	600	17	39	74
278	0.0594	0.0008	0.812	0.0139	0.0991	0.0015	583	62	609	17	604	15	81	143
279	0.0618	0.0009	0.845	0.0144	0.0992	0.0015	667	60	610	17	622	16	85	149
280	0.0608	0.0008	0.8373	0.0137	0.0999	0.0015	631	56	614	17	618	15	167	259
281	0.0621	0.0012	0.8507	0.0184	0.0994	0.0015	676	85	611	18	625	20	15	42
282	0.0589	0.0009	0.8125	0.0141	0.1001	0.0015	562	64	615	17	604	16	72	143
285	0.0596	0.0009	0.8052	0.0145	0.0979	0.0014	590	66	602	17	600	16	69	109
286	0.0634	0.0011	0.8999	0.0176	0.1030	0.0016	721	74	632	18	652	19	38	61
287	0.0609	0.0011	0.8420	0.0168	0.1002	0.0015	637	77	616	18	620	18	35	61
289	0.0618	0.0008	0.8558	0.0144	0.1005	0.0015	666	59	617	17	628	16	136	204

		И	зотопны	е отноше	ния				Возраст	, млн лет			Th,	U,
л⁰ зерна	²⁰⁷ Pb/ ²⁰	⁰⁶ Pb±1σ	²⁰⁷ Pb/ ²³⁵	U±1σ	²⁰⁶ Pb/ ²³⁸	U±1σ	²⁰⁷ Pb/ ²⁰	⁶⁶ Pb±2σ	²⁰⁷ Pb/ ²³⁵	⁵ U±2σ	²⁰⁶ Pb/ ²³⁸	³ U±2σ	ppm	ppm
291	0.0641	0.0009	0.8836	0.0151	0.100	0.0015	744	60	615	17	643	16	114	172
292	0.0605	0.0011	0.8298	0.0169	0.0995	0.0015	620	79	612	18	614	19	27	59
293	0.0597	0.0009	0.8075	0.0147	0.0981	0.0015	592	67	604	17	601	16	72	113
297	0.0637	0.0010	0.8712	0.0159	0.0993	0.0015	730	66	610	17	636	17	127	197
298	0.0606	0.0009	0.8220	0.0149	0.0984	0.0014	625	67	605	17	609	17	81	135
300	0.0608	0.0010	0.8206	0.0157	0.0979	0.0015	633	72	602	17	608	17	58	95
303	0.0600	0.0009	0.8047	0.0146	0.0972	0.0014	604	68	598	17	600	16	101	167

		Из	отопные	отношен	ия			I	Возраст, м	илн лет				T
л⁰ зерна	²⁰⁷ Pb/ ²⁰	[%] Pb±1σ	²⁰⁷ Pb/ ²³⁵	U±1σ	²⁰⁶ Pb/ ²³⁸	U±1σ	²⁰⁷ Pb/ ²⁰⁶	Pb±2σ	²⁰⁷ Pb/ ²³⁵	U±2σ	²⁰⁶ Pb/ ²³⁸	U±2σ	In, ppm	U, ppm
80	0.0717	0.0008	1.0249	0.0130	0.1037	0.0012	978	45	636	14	716	13	76	174
81	0.0647	0.0007	0.8928	0.0110	0.1001	0.0012	765	45	615	14	648	12	326	395
83	0.0657	0.0007	0.9387	0.0116	0.1036	0.0012	798	45	635	14	672	12	216	384
84	0.0675	0.0007	0.9234	0.0116	0.0992	0.0012	854	44	610	14	664	12	773	982
86	0.0615	0.0007	0.8726	0.0107	0.1030	0.0012	655	46	632	14	637	12	375	510
88	0.0680	0.0007	0.9281	0.0117	0.0991	0.0012	867	45	609	14	667	12	268	522
89	0.0619	0.0007	0.8714	0.0108	0.1021	0.0012	670	46	627	14	636	12	173	349
90	0.0612	0.0007	0.8518	0.0106	0.1009	0.0012	646	47	620	14	626	12	102	317
91	0.0613	0.0008	0.8714	0.0132	0.1031	0.0013	650	58	632	15	636	14	160	383
92	0.0682	0.0009	0.9504	0.0139	0.1011	0.0013	874	54	621	15	678	14	74	387
93	0.0612	0.0008	0.8589	0.0121	0.1019	0.0013	645	53	625	15	630	13	191	471
94	0.0618	0.0007	0.8482	0.0117	0.0996	0.0012	666	52	612	15	624	13	128	309
96	0.0624	0.0007	0.8897	0.0112	0.1034	0.0012	688	47	635	14	646	12	216	348
97	0.0621	0.0009	0.8778	0.0135	0.1026	0.0013	676	59	629	15	640	14	77	192
98	0.0664	0.0008	0.9525	0.0139	0.1041	0.0013	818	53	638	16	679	14	144	285
99	0.0614	0.0007	0.8462	0.0109	0.1000	0.0012	653	47	614	14	623	12	461	580
100	0.0656	0.0007	0.8874	0.0112	0.0981	0.0012	794	45	603	14	645	12	336	773
101	0.0611	0.0008	0.8660	0.0127	0.1028	0.0013	643	56	631	15	633	14	89	268
102-a	0.0648	0.0008	0.9187	0.0127	0.1028	0.0013	767	50	631	15	662	13	285	471
102-b	0.0634	0.0007	0.8696	0.0107	0.0995	0.0012	721	45	612	14	635	12	423	879

Таблица 9. Результаты исследования U-Pb изотопной системы методом LA-ICP-MS в цирконах из чарнокитоидов в пробе 2816

		Из	отопные	отношен	ия			I	Возраст, м	илн лет				
№ зерна	²⁰⁷ Pb/ ²⁰	[%] Pb±1σ	²⁰⁷ Pb/ ²³⁵	U±1σ	²⁰⁶ Pb/ ²³⁸	U±1σ	²⁰⁷ Pb/ ²⁰⁶	Pb±2σ	²⁰⁷ Pb/ ²³⁵	U±2σ	²⁰⁶ Pb/ ²³⁸	U±2σ	Th, ppm	U, ppm
103	0.0640	0.0007	0.8412	0.0106	0.0954	0.0012	741	45	587	14	620	12	543	834
104	0.0650	0.0007	0.8943	0.0117	0.0998	0.0012	774	48	613	14	649	13	390	845
105	0.0618	0.0007	0.8529	0.0111	0.1002	0.0012	665	48	616	14	626	12	85	214
106	0.0603	0.0007	0.8426	0.0117	0.1014	0.0013	612	51	623	15	621	13	100	366
109	0.0615	0.0007	0.8961	0.0124	0.1058	0.0013	655	51	648	16	650	13	154	269
111	0.0644	0.0007	0.9149	0.0114	0.1030	0.0012	756	45	632	14	660	12	288	542
112	0.0609	0.0007	0.8504	0.0107	0.1014	0.0012	634	47	622	14	625	12	120	467
113	0.0637	0.0008	0.8906	0.0132	0.1015	0.0013	730	54	623	15	647	14	267	455
114	0.0616	0.0007	0.8580	0.0107	0.1010	0.0012	660	46	620	14	629	12	286	585
116	0.0625	0.0010	0.8657	0.0149	0.1004	0.0013	691	67	617	16	633	16	90	195
117	0.0606	0.0007	0.8367	0.0105	0.1002	0.0012	623	48	616	14	617	11	94	316
119	0.0612	0.0006	0.8397	0.0102	0.0995	0.0012	646	45	612	14	619	11	277	795
120-а	0.0638	0.0010	0.8736	0.0146	0.0993	0.0013	735	64	610	16	638	16	229	471
120-ь	0.0621	0.0007	0.8580	0.0109	0.1002	0.0012	678	47	616	14	629	12	106	341
121	0.0628	0.0007	0.8743	0.0117	0.1010	0.0013	701	49	620	15	638	13	144	357
122	0.0603	0.0006	0.8221	0.0101	0.0990	0.0012	612	46	608	14	609	11	39	638
124	0.0612	0.0007	0.8583	0.0114	0.1017	0.0013	647	48	624	15	629	12	441	791
125	0.0628	0.0007	0.8555	0.0112	0.0988	0.0012	701	48	608	14	628	12	104	341
126	0.0619	0.0008	0.8639	0.0134	0.1013	0.0013	670	59	622	15	632	14	167	279
129	0.0607	0.0007	0.8516	0.0108	0.1018	0.0012	628	47	625	14	626	12	223	543
131	0.0608	0.0008	0.8379	0.0125	0.1001	0.0013	630	56	615	15	618	14	56	609

		Из	отопные	отношен	ния			ŀ	Возраст, м	илн лет	-			TI
л⁰ зерна	²⁰⁷ Pb/ ²⁰	⁾⁶ Pb±1σ	²⁰⁷ Pb/ ²³⁵	U±1σ	²⁰⁶ Pb/ ²³⁸	U±1σ	²⁰⁷ Pb/ ²⁰⁶	Pb±2σ	²⁰⁷ Pb/ ²³⁵	U±2σ	²⁰⁶ Pb/ ²³⁸	U±2σ	Th, ppm	U, ppm
132	0.0607	0.0009	0.8520	0.0136	0.1019	0.0013	627	62	625	16	626	15	124	242

20		Из	отопные	отношени	я			I	Возраст,	млн лет	1		Th,	U,
л⁰ зерна	²⁰⁷ Pb/ ²⁰	⁶ Pb±1σ	²⁰⁷ Pb/ ²³⁵	U±1σ	²⁰⁶ Pb/ ²³⁸	U±1σ	²⁰⁷ Pb/ ²⁰⁶	Pb±2σ	²⁰⁷ Pb/ ²³	⁵ U±2σ	²⁰⁶ Pb/ ²³⁸	³ U±2σ	ppm	ppm
01	0.0607	0.0007	0.8325	0.0108	0.0996	0.0012	627	46	612	15	615	12	446	396
02	0.0624	0.0007	0.8650	0.0114	0.1006	0.0013	686	47	618	15	633	12	200	236
03	0.0715	0.0009	0.9784	0.0147	0.0993	0.0013	971	53	610	15	693	15	151	295
04	0.0607	0.0006	0.8234	0.0106	0.0985	0.0012	627	46	606	14	610	12	453	488
05	0.0602	0.0007	0.8500	0.0121	0.1024	0.0013	611	52	628	16	625	13	266	281
06	0.0608	0.0007	0.7983	0.0103	0.0952	0.0012	632	46	586	14	596	12	491	535
07	0.0706	0.0008	0.9911	0.0130	0.1019	0.0013	945	46	625	15	699	13	422	417
09	0.0621	0.0007	0.8507	0.0111	0.0994	0.0013	676	46	611	15	625	12	188	459
10	0.0615	0.0007	0.8541	0.0113	0.1007	0.0013	657	47	619	15	627	12	166	264
11	0.0622	0.0007	0.8637	0.0115	0.1008	0.0013	679	47	619	15	632	12	105	251
12	0.0617	0.0007	0.8165	0.0107	0.0960	0.0012	664	47	591	14	606	12	242	484
13	0.0601	0.0007	0.8032	0.0106	0.0970	0.0012	606	47	597	14	599	12	184	337
14	0.0606	0.0007	0.8105	0.0107	0.0969	0.0012	626	48	597	14	603	12	335	349
16	0.0604	0.0007	0.8207	0.0108	0.0985	0.0012	619	48	606	14	608	12	311	683
17	0.0670	0.0007	0.9263	0.0124	0.1002	0.0013	838	46	616	15	666	13	139	283
18	0.0626	0.0007	0.8385	0.0110	0.0971	0.0012	696	47	597	14	618	12	323	316
19	0.0595	0.0006	0.7981	0.0101	0.0973	0.0012	585	46	599	14	596	11	187	527
20	0.0606	0.0007	0.8163	0.0108	0.0978	0.0012	623	49	601	14	606	12	146	269
21	0.0603	0.0007	0.8170	0.0107	0.0982	0.0012	615	47	604	15	606	12	189	218
22	0.0614	0.0007	0.8424	0.0111	0.0996	0.0012	652	48	612	15	620	12	181	229

Таблица 10. Результаты исследования U-Pb изотопной системы методом LA-ICP-MS в цирконах из апогранулитовых гнейсов в пробе SB0712B

		Из	отопные	отношени	я]	Возраст,	млн лет			Th,	U,
л⁰ зерна	²⁰⁷ Pb/ ²⁰	[%] Pb±1σ	²⁰⁷ Pb/ ²³⁵	U±1σ	²⁰⁶ Pb/ ²³⁸	U±1σ	²⁰⁷ Pb/ ²⁰⁶	Pb±2σ	²⁰⁷ Pb/ ²³	⁵ U±2σ	²⁰⁶ Pb/ ²³⁸	³ U±2σ	ppm	ppm
24	0.0602	0.0006	0.8061	0.0103	0.0972	0.0012	610	46	598	14	600	12	164	544
27	0.0622	0.0008	0.8341	0.0122	0.0972	0.0013	681	52	598	15	616	13	169	505
28	0.0614	0.0007	0.8308	0.0108	0.0982	0.0012	651	46	604	14	614	12	337	375
29	0.0609	0.0007	0.8401	0.0109	0.1000	0.0013	636	46	615	15	619	12	174	431
30	0.0609	0.0007	0.8447	0.0111	0.1005	0.0013	637	47	618	15	622	12	203	278
32	0.0624	0.0007	0.8512	0.0110	0.0990	0.0012	686	46	609	15	625	12	312	586
34	0.0605	0.0007	0.7998	0.0105	0.0960	0.0012	620	47	591	14	597	12	546	466
35	0.0605	0.0007	0.8058	0.0106	0.0965	0.0012	623	47	594	14	600	12	200	516
36	0.0604	0.0007	0.8167	0.0106	0.0981	0.0012	617	47	603	14	606	12	446	406
37	0.0616	0.0007	0.9071	0.0118	0.1067	0.0014	661	45	654	16	656	13	354	422
39	0.0612	0.0007	0.8456	0.0111	0.1002	0.0013	646	46	616	15	622	12	129	323
40	0.0605	0.0007	0.8407	0.0112	0.1007	0.0013	623	48	619	15	620	12	143	229
41	0.0610	0.0007	0.8441	0.0111	0.1003	0.0013	640	46	616	15	621	12	141	318
43	0.0599	0.0007	0.8274	0.0115	0.1001	0.0013	601	50	615	15	612	13	168	212
45	0.0603	0.0006	0.8311	0.0109	0.0999	0.0013	615	46	614	15	614	12	179	468
49	0.0608	0.0008	0.8470	0.0127	0.1011	0.0014	631	54	621	16	623	14	232	379
50	0.0607	0.0007	0.8214	0.0112	0.0982	0.0013	628	47	604	15	609	12	177	624
53	0.0597	0.0007	0.8271	0.0111	0.1004	0.0013	594	49	617	15	612	12	216	259
54	0.0613	0.0007	0.8262	0.0108	0.0978	0.0012	648	47	602	14	612	12	202	551
55	0.0619	0.0007	0.8341	0.0110	0.0977	0.0012	670	48	601	14	616	12	152	409
56	0.0606	0.0007	0.8167	0.0108	0.0978	0.0012	624	47	601	15	606	12	193	385

20		Из	отопные	отношени	я			I	Возраст,	млн лет	1		Th,	U,
л⁰ зерна	²⁰⁷ Pb/ ²⁰	⁶ Pb±1σ	²⁰⁷ Pb/ ²³⁵	U±1σ	²⁰⁶ Pb/ ²³⁸	U±1σ	²⁰⁷ Pb/ ²⁰⁶	Pb±2σ	²⁰⁷ Pb/ ²³	⁵⁵ U±2σ	²⁰⁶ Pb/ ²³⁸	³ U±2σ	ppm	ppm
64	0.0604	0.0007	0.8342	0.0113	0.1001	0.0013	619	49	615	15	616	12	241	219

		И	[зотопны	е отноше	ения				Возраст,	млн лет			Th,	U,
л⁰ зерна	²⁰⁷ Pb/ ²⁰	⁶ Pb±1σ	²⁰⁷ Pb/ ²³⁵	U±1σ	²⁰⁶ Pb/ ²³⁸	U±1σ	²⁰⁷ Pb/ ²⁰⁶ P	b±2σ	²⁰⁷ Pb/ ²³⁵	U ±2σ	²⁰⁶ Pb/ ²³⁸	U±2σ	ppm	ppm
02	0.0607	0.0006	0.8450	0.0094	0.1010	0.0011	628	45	620	13	622	10	517	1025
03	0.0611	0.0006	0.8386	0.0090	0.0996	0.0010	642	45	612	12	618	10	478	687
05	0.0611	0.0006	0.8529	0.0092	0.1012	0.0011	643	45	622	12	626	10	741	1378
10	0.0686	0.0007	0.9742	0.0106	0.1030	0.0011	887	43	632	13	691	11	350	840
12	0.0613	0.0006	0.8533	0.0091	0.1011	0.0010	648	45	621	12	627	10	271	766
3	0.0633	0.0007	0.8966	0.0095	0.1027	0.0011	719	44	630	12	650	10	406	876
18	0.0785	0.0008	1.1487	0.0125	0.1062	0.0011	1159	42	651	13	777	12	614	583
19	0.0622	0.0007	0.8715	0.0096	0.1016	0.0011	682	46	624	12	636	10	254	384
20	0.0607	0.0006	0.8485	0.0091	0.1015	0.0010	627	46	623	12	624	10	205	621
21	0.0629	0.0007	0.8781	0.0094	0.1012	0.0010	705	45	622	12	640	10	374	529
22	0.0613	0.0007	0.8554	0.0092	0.1013	0.0010	648	46	622	12	628	10	397	586
25	0.0609	0.0007	0.8391	0.0096	0.0999	0.0011	637	48	614	12	619	11	1591	1556
34	0.0596	0.0006	0.8126	0.0090	0.0989	0.0010	589	47	608	12	604	10	1254	2035
35	0.0605	0.0007	0.8319	0.0090	0.0998	0.0010	620	47	613	12	615	10	440	718
36	0.0598	0.0006	0.8606	0.0096	0.1044	0.0011	595	46	640	13	631	10	1394	2259
39	0.0645	0.0007	0.9438	0.0113	0.1062	0.0012	757	48	651	13	675	12	868	2340
40	0.0618	0.0007	0.8583	0.0095	0.1008	0.0011	666	46	619	12	629	10	373	551
41	0.0606	0.0006	0.8525	0.0089	0.1020	0.0010	625	45	626	12	626	10	1920	2774
42	0.0611	0.0007	0.8954	0.0099	0.1062	0.0011	644	47	651	13	649	11	128	269
43	0.0646	0.0007	0.9114	0.0093	0.1023	0.0010	762	44	628	12	658	10	4353	4267

Таблица 11. Результаты исследования U-Pb системы методом LA-ICP-MS в цирконах из гранито-гнейсов в пробе 2906.

		V	Ізотопны	е отноше	ения				Возраст,	млн лет			Th,	U,
№ зерна	²⁰⁷ Pb/ ²⁰	⁾⁶ Pb±1σ	²⁰⁷ Pb/ ²³⁵	U±1σ	²⁰⁶ Pb/ ²³⁸	U±1σ	²⁰⁷ Pb/ ²⁰⁶ P	b±2σ	²⁰⁷ Pb/ ²³⁵	U±2σ	²⁰⁶ Pb/ ²³⁸	U±2σ	ppm	ppm
45	0.0620	0.0007	0.8819	0.0096	0.1032	0.0011	674	46	633	12	642	10	547	692
47	0.0744	0.0008	1.0567	0.0112	0.1031	0.0010	1051	42	633	12	732	11	2212	3545
48	0.0680	0.0008	0.9521	0.0108	0.1015	0.0011	869	46	623	12	679	11	355	819
49	0.0617	0.0007	0.8763	0.0092	0.1030	0.0010	664	46	632	12	639	10	238	519
50	0.0638	0.0008	0.9477	0.0119	0.1078	0.0012	734	52	660	14	677	12	745	2598
51	0.0619	0.0007	0.8804	0.0098	0.1032	0.0011	669	47	633	12	641	11	2891	2197
52	0.0629	0.0007	0.8882	0.0093	0.1024	0.0010	705	46	629	12	645	10	344	681
53	0.0670	0.0008	0.9708	0.0111	0.1052	0.0011	836	47	645	13	689	11	798	680
55	0.0622	0.0006	0.9029	0.0104	0.1053	0.0012	680	44	646	14	653	11	175	915
59	0.0642	0.0007	0.9188	0.0105	0.1037	0.0012	749	43	636	14	662	11	2861	2028
60	0.0620	0.0006	0.8995	0.0103	0.1052	0.0012	675	44	645	14	651	11	664	854
61	0.0621	0.0007	0.8908	0.0112	0.1040	0.0012	679	48	638	14	647	12	503	511
72	0.0594	0.0006	0.8467	0.0094	0.1033	0.0011	583	45	634	13	623	10	596	1176
75	0.0630	0.0007	0.9197	0.0104	0.1059	0.0012	708	44	649	14	662	11	545	798
76	0.0598	0.0006	0.8796	0.0105	0.1066	0.0012	598	46	653	14	641	11	501	1139
78	0.0613	0.0006	0.8804	0.0099	0.1042	0.0011	649	45	639	13	641	11	147	492
79	0.0608	0.0006	0.8845	0.0101	0.1054	0.0012	634	46	646	14	643	11	297	713
81	0.0609	0.0006	0.9157	0.0101	0.1091	0.0012	635	45	667	14	660	11	2393	3056
85	0.1269	0.0014	1.9995	0.0232	0.1143	0.0013	2055	38	698	15	1,115	16	5155	2773
87	0.0635	0.0007	0.9113	0.0103	0.1040	0.0011	726	46	638	13	658	11	2120	4278
88	0.0617	0.0007	0.8896	0.0098	0.1046	0.0011	663	45	641	13	646	10	213	936

		V	[зотопны	е отноше	ения				Возраст, 1	млн лет			Th,	U,
л⁰ зерна	²⁰⁷ Pb/ ²⁰	⁶⁶ Pb±1σ	²⁰⁷ Pb/ ²³⁵	U±1σ	²⁰⁶ Pb/ ²³⁸	U±1σ	²⁰⁷ Pb/ ²⁰⁶ P	b±2σ	²⁰⁷ Pb/ ²³⁵	U ±2σ	²⁰⁶ Pb/ ²³⁸	U±2σ	ppm	ppm
90	0.0645	0.0007	0.9199	0.0108	0.1035	0.0011	757	47	635	13	662	11	471	544

		V	[зотопны	е отноше	ения				Возраст,	млн лет	1		Th,	U,
л⁰ зерна	²⁰⁷ Pb/ ²⁰	⁶ Pb±1σ	²⁰⁷ Pb/ ²³⁵	U±1σ	²⁰⁶ Pb/ ²³⁸	U±1σ	²⁰⁷ Pb/ ²⁰⁶ P	b±2σ	²⁰⁷ Pb/ ²³⁵	U±2σ	²⁰⁶ Pb/ ²³⁸	U±2σ	ppm	ppm
01	0.0660	0.0008	1.1904	0.0135	0.1308	0.0011	807	53	792	13	796	12	79.3	124.6
03	0.0634	0.0008	0.9730	0.0110	0.1114	0.0010	720	54	681	11	690	11	89.9	169.5
04	0.0666	0.0008	1.1865	0.0127	0.1293	0.0011	824	50	784	13	794	12	150.0	243.4
05	0.0657	0.0009	1.1711	0.0138	0.1294	0.0011	795	55	784	13	787	13	48.8	107.7
06	0.0657	0.0008	1.1567	0.0126	0.1278	0.0011	795	52	775	13	780	12	78.1	158.2
07	0.0664	0.0008	1.1860	0.0129	0.1296	0.0011	818	51	786	13	794	12	78.5	163.5
08	0.0656	0.0008	1.1398	0.0132	0.1260	0.0011	794	54	765	12	772	12	71.4	110.5
09	0.0659	0.0009	1.1247	0.0141	0.1238	0.0011	802	58	753	12	765	13	71.2	103.2
10	0.0640	0.0010	1.0397	0.0146	0.1179	0.0011	741	65	718	12	724	14	35.9	64.7
11	0.0653	0.0008	1.1088	0.0118	0.1232	0.0010	783	51	749	12	758	11	155.7	226.1
12	0.0648	0.0008	1.1370	0.0124	0.1273	0.0011	767	52	772	13	771	12	89.5	165.9
13	0.0651	0.0008	1.1140	0.0120	0.1241	0.0011	777	51	754	12	760	11	118.6	194.5
14	0.0656	0.0008	1.1523	0.0123	0.1273	0.0011	794	51	773	12	778	12	89.0	163.6
15	0.0648	0.0008	1.0426	0.0120	0.1167	0.0010	768	54	711	12	725	12	61.4	126.9
18	0.0667	0.0008	1.2188	0.0153	0.1325	0.0014	829	53	802	15	809	14	32.5	74.6
19	0.0670	0.0008	1.2442	0.0138	0.1346	0.0013	839	47	814	15	821	12	77.0	150.9
20	0.0653	0.0007	1.1622	0.0126	0.1291	0.0013	784	47	783	14	783	12	75.6	134.0
21	0.0669	0.0007	1.2437	0.0133	0.1348	0.0013	835	46	815	15	821	12	94.1	145.6
22	0.0653	0.0007	1.1583	0.0129	0.1286	0.0013	785	48	780	15	781	12	98.0	182.2
24	0.0664	0.0009	1.1857	0.0153	0.1296	0.0013	817	55	786	15	794	14	32.8	48.5

Таблица 12. Результаты исследования U-Pb системы методом LA-ICP-MS в цирконах из зндербитов в пробе 2914.

	Изотопные отношения									Th,	U,			
л∘ зерна	²⁰⁷ Pb/ ²⁰	⁶ Pb±1σ	²⁰⁷ Pb/ ²³⁵	U±1σ	²⁰⁶ Pb/ ²³⁸	U±1σ	²⁰⁷ Pb/ ²⁰⁶ P	b±2σ	²⁰⁷ Pb/ ²³⁵	U±2σ	²⁰⁶ Pb/ ²³⁸	U±2σ	ppm	ppm
27	0.0658	0.0007	1.1752	0.0127	0.1295	0.0012	801	47	785	14	789	12	63.2	129.5
28	0.0673	0.0008	1.2170	0.0145	0.1311	0.0013	847	51	794	15	808	13	63.4	102.8
30	0.0655	0.0007	1.1893	0.0127	0.1317	0.0013	790	46	798	15	796	12	214.9	354.9
32	0.0656	0.0008	1.2048	0.0132	0.1333	0.0013	792	48	807	14	803	12	80.6	113.8
33	0.0652	0.0008	1.1105	0.0126	0.1236	0.0012	779	49	751	14	758	12	72.9	142.4
34	0.0669	0.0008	1.2027	0.0136	0.1304	0.0013	835	49	790	14	802	12	81.1	132.6
35	0.0668	0.0008	1.2001	0.0127	0.1302	0.0012	833	47	789	14	801	12	100.1	194.1
36	0.0658	0.0008	1.1501	0.0125	0.1268	0.0012	800	48	770	14	777	12	92.7	144.7
37	0.0651	0.0007	1.1400	0.0140	0.1271	0.0015	777	45	771	17	773	13	119.7	169.6
38	0.0654	0.0007	1.2183	0.0149	0.1350	0.0016	789	45	817	18	809	14	53.4	111.4
40	0.0669	0.0007	1.2796	0.0159	0.1388	0.0016	834	45	838	19	837	14	75.3	160.9
41	0.0655	0.0007	1.1792	0.0141	0.1306	0.0015	790	45	792	17	791	13	104.0	163.2
42	0.0663	0.0007	1.2554	0.0148	0.1374	0.0016	815	44	830	18	826	13	101.4	189.8
43	0.0663	0.0007	1.2413	0.0147	0.1358	0.0015	816	45	821	18	820	13	107.7	156.0
44	0.0643	0.0007	1.1524	0.0140	0.1300	0.0015	751	46	788	17	778	13	138.4	191.4
46	0.0655	0.0007	1.1656	0.0137	0.1291	0.0015	790	45	783	17	785	13	106.5	188.6
47	0.0659	0.0007	1.2235	0.0147	0.1346	0.0015	805	46	814	17	811	13	109.2	186.7
49	0.0655	0.0007	1.1404	0.0133	0.1263	0.0014	790	45	767	16	773	13	100.1	246.4
50	0.0673	0.0008	1.2756	0.0162	0.1375	0.0016	846	48	831	18	835	14	48.1	86.8
52	0.0643	0.0007	1.0845	0.0131	0.1224	0.0014	751	48	744	16	746	13	60.8	123.4
53	0.0656	0.0007	1.1677	0.0136	0.1292	0.0014	792	46	783	16	786	13	86.6	162.2
56	0.0658	0.0007	1.1576	0.0136	0.1276	0.0014	799	46	775	16	781	13	112.2	150.8

20	Изотопные отношения									Th,	U,			
л∘ зерна	²⁰⁷ Pb/ ²⁰	⁶ Pb±1σ	²⁰⁷ Pb/ ²³⁵	U±1σ	²⁰⁶ Pb/ ²³⁸	U±1σ	²⁰⁷ Pb/ ²⁰⁶ P	b±2σ	²⁰⁷ Pb/ ²³⁵	U±2σ	²⁰⁶ Pb/ ²³⁸	U±2σ	ppm	ppm
o-12	0.0621	0.0023	0.9400	0.0348	0.1098	0.0015	677	158	672	17	673	36	25.70	25.50
12	0.0605	0.0012	0.8290	0.0161	0.0995	0.0009	620	88	611	11	613	18	52.2	25.7
o-26	0.0605	0.0011	0.7766	0.0143	0.0931	0.0011	622	79	574	13	584	16	32.0	28.4
u-13	0.0659	0.0017	1.1570	0.0295	0.1274	0.0012	803	111	773	13	781	27	18.0	32.2
o-31	0.0659	0.0009	1.0659	0.0153	0.1173	0.0013	803	58	715	15	737	15	33.3	33.2
u-25	0.0639	0.0011	1.0794	0.0183	0.1226	0.0012	737	75	746	13	743	18	24.6	33.9
u-20	0.0639	0.0011	1.0232	0.0171	0.1162	0.0011	738	74	709	13	716	17	33.5	34.1
o-17	0.0655	0.0009	1.1243	0.0168	0.1245	0.0015	790	58	756	17	765	16	24.8	35.6
06	0.0581	0.0011	0.7813	0.0137	0.0976	0.0009	533	82	600	11	586	16	42.1	37.3
u-24	0.0667	0.0011	1.1228	0.0176	0.1221	0.0011	829	69	743	13	764	17	33.0	37.8
o-32	0.0658	0.0009	1.1628	0.0160	0.1281	0.0014	801	55	777	16	783	15	27.1	38.7
u-12	0.0663	0.0017	0.9634	0.0239	0.1054	0.0010	815	108	646	11	685	24	37.2	41.2
u-12	0.0663	0.0017	0.9634	0.0239	0.1054	0.0010	815	108	646	11	685	24	37.2	41.2
u-36	0.0659	0.0011	1.1761	0.0177	0.1295	0.0012	802	67	785	14	790	16	37.2	41.9
u-43	0.0657	0.0011	0.9579	0.0158	0.1057	0.0010	797	73	648	11	682	16	34.0	42.0
07	0.0594	0.0010	0.8201	0.0133	0.1001	0.0009	582	76	615	11	608	15	53.5	43.2
11	0.0595	0.0010	0.8276	0.0130	0.1009	0.0009	585	73	620	11	612	14	31.2	43.7
o-15	0.0648	0.0009	1.0339	0.0155	0.1157	0.0014	769	59	706	16	721	15	24.9	44.0
0-6	0.0612	0.0008	0.9101	0.0136	0.1079	0.0013	645	58	661	15	657	14	32.8	44.7
u-45	0.0636	0.0011	0.9979	0.0160	0.1139	0.0010	727	72	695	12	703	16	35.7	44.8

Таблица 13. Результаты исследования U-Pb системы методом LA-ICP-MS в цирконах из зндербитов в пробе AB2.

	Изотопные отношения									Th,	U,			
л⁰ зерна	²⁰⁷ Pb/ ²⁰	⁶ Pb±1σ	²⁰⁷ Pb/ ²³⁵	U±1σ	²⁰⁶ Pb/ ²³⁸	U±1σ	²⁰⁷ Pb/ ²⁰⁶ P	b±2σ	²⁰⁷ Pb/ ²³⁵	U±2σ	²⁰⁶ Pb/ ²³⁸	U±2σ	ppm	ppm
u-3	0.0645	0.0014	1.1220	0.0227	0.1261	0.0012	759	89	766	13	764	21	41.0	45.3
u-26	0.0656	0.0010	1.0028	0.0151	0.1109	0.0010	792	67	678	12	705	15	36.2	45.6
u-27	0.0642	0.0011	0.9687	0.0151	0.1094	0.0010	748	70	669	12	688	15	40.7	46.3
u-22	0.0645	0.0011	1.0368	0.0165	0.1166	0.0011	757	70	711	13	722	16	38.5	46.9
04	0.0630	0.0010	1.0678	0.0156	0.1229	0.0011	709	67	747	13	738	15	33.9	48.0
u-38	0.0621	0.0011	0.8943	0.0143	0.1045	0.0010	677	72	641	11	649	15	50.0	48.6
o-10	0.0656	0.0008	1.1519	0.0162	0.1274	0.0015	792	53	773	18	778	15	30.9	48.6
09	0.0605	0.0010	0.8138	0.0124	0.0976	0.0009	622	71	600	10	605	14	56.0	48.7
01	0.0610	0.0010	0.8858	0.0135	0.1054	0.0010	638	70	646	11	644	14	40.4	50.2
o-29	0.0676	0.0009	1.1195	0.0149	0.1201	0.0013	856	53	731	15	763	14	41.6	52.1
05	0.0643	0.0010	1.0061	0.0144	0.1135	0.0010	751	65	693	12	707	14	58.0	53.1
o-33	0.0656	0.0008	1.1264	0.0148	0.1245	0.0014	794	53	757	16	766	14	43.1	56.5
u-7	0.0633	0.0016	0.9592	0.0230	0.1098	0.0010	720	107	672	12	683	24	58.3	56.5
u-18	0.0650	0.0009	1.0091	0.0136	0.1126	0.0010	774	60	688	12	708	14	63.3	57.3
u-32	0.0672	0.0010	1.1832	0.0156	0.1277	0.0012	844	59	775	13	793	14	55.1	58.1
14	0.0627	0.0009	0.9845	0.0132	0.1138	0.0010	699	63	695	12	696	13	47.5	59.7
u-8	0.0644	0.0012	1.1100	0.0189	0.1250	0.0011	756	77	759	13	758	18	40.7	60.2
o-16	0.0641	0.0008	0.9974	0.0139	0.1129	0.0014	744	53	690	16	703	14	58.2	60.2
u-6	0.0662	0.0011	1.1737	0.0190	0.1285	0.0011	813	73	780	13	788	18	36.5	62.5
o-24	0.0653	0.0008	1.0701	0.0139	0.1188	0.0014	785	51	724	16	739	14	61.3	62.9
13	0.0618	0.0009	0.9173	0.0125	0.1077	0.0009	666	64	659	11	661	13	50.4	63.1
o-4	0.0640	0.0008	1.0619	0.0147	0.1204	0.0015	741	51	733	17	735	14	5.98	64.4

	Изотопные отношения									Th,	U,			
л⁰ зерна	²⁰⁷ Pb/ ²⁰	⁶ Pb±1σ	²⁰⁷ Pb/ ²³⁵	U±1σ	²⁰⁶ Pb/ ²³⁸	U±1σ	²⁰⁷ Pb/ ²⁰⁶ P	b±2σ	²⁰⁷ Pb/ ²³⁵	U±2σ	²⁰⁶ Pb/ ²³⁸	U±2σ	ppm	ppm
o-25	0.0644	0.0008	1.1413	0.0147	0.1286	0.0015	754	50	780	17	773	14	51.5	65.7
u-47	0.0620	0.0009	0.9462	0.0135	0.1107	0.0010	674	65	677	12	676	14	68.4	66.5
u-5	0.0649	0.0011	1.0849	0.0174	0.1212	0.0011	772	72	738	12	746	17	68.5	67.3
03	0.0618	0.0009	0.8941	0.0123	0.1049	0.0009	668	64	643	11	649	13	81.0	67.5
u-21	0.0619	0.0009	0.9516	0.0125	0.1115	0.0010	670	60	682	12	679	13	89.0	69.7
u-29	0.0608	0.0009	0.8433	0.0116	0.1005	0.0009	633	63	618	11	621	13	94.3	70.7
o-8	0.0650	0.0008	1.0716	0.0146	0.1195	0.0015	776	50	728	17	740	14	54.1	71.3
o-27	0.0654	0.0008	1.1367	0.0145	0.1260	0.0014	789	50	765	16	771	14	78.5	71.3
u-31	0.0656	0.0009	1.0911	0.0140	0.1207	0.0011	793	58	734	13	749	13	76.8	71.8
o-3	0.0647	0.0008	1.0325	0.0142	0.1157	0.0014	766	50	706	16	720	14	71.6	73.3
u-19	0.0641	0.0008	1.1214	0.0137	0.1269	0.0012	745	55	770	13	764	13	83.5	74.7
u-37	0.0642	0.0009	1.0430	0.0134	0.1179	0.0011	747	59	718	12	725	13	38.3	74.8
u-33	0.0599	0.0009	0.8448	0.0115	0.1023	0.0009	599	63	628	11	622	13	111.8	75.3
u-17	0.0653	0.0008	1.1469	0.0138	0.1274	0.0012	783	54	773	13	776	13	77.2	76.9
u-15	0.0618	0.0008	0.9450	0.0117	0.1109	0.0010	667	56	678	12	676	12	115.2	80.4
o-30	0.0648	0.0008	1.0685	0.0135	0.1196	0.0013	767	50	728	15	738	13	80.6	80.5
u-9	0.0643	0.0011	1.0003	0.0156	0.1128	0.0010	751	71	689	11	704	16	58.4	81.7
u-28	0.0620	0.0009	0.9185	0.0120	0.1074	0.0010	675	60	658	11	662	13	69.6	84.5
02	0.0634	0.0009	0.9649	0.0123	0.1104	0.0010	721	60	675	11	686	13	91.4	85.0
o-21	0.0632	0.0007	1.0776	0.0137	0.1237	0.0014	713	49	752	16	742	13	63.0	85.5
u-1	0.0629	0.0010	1.0260	0.0154	0.1182	0.0011	706	68	720	12	717	15	105.0	86.2
o-18	0.0653	0.0008	1.1138	0.0148	0.1237	0.0015	784	50	752	17	760	14	81.0	87.3

	Изотопные отношения									Th,	U,			
л⁰ зерна	²⁰⁷ Pb/ ²⁰	[%] Pb±1σ	²⁰⁷ Pb/ ²³⁵	U±1σ	²⁰⁶ Pb/ ²³⁸	U±1σ	²⁰⁷ Pb/ ²⁰⁶ F	Pb±2σ	²⁰⁷ Pb/ ²³⁵	U±2σ	²⁰⁶ Pb/ ²³⁸	U±2σ	ppm	ppm
o-5	0.0638	0.0008	1.0519	0.0145	0.1195	0.0015	736	50	728	17	730	14	69.4	87.7
u-16	0.0639	0.0008	1.0084	0.0120	0.1145	0.0011	737	54	699	12	708	12	106.9	88.5
u-14	0.0646	0.0011	1.0559	0.0166	0.1185	0.0010	762	73	722	11	732	16	77.8	89.0
u-23	0.0658	0.0009	1.0820	0.0140	0.1193	0.0011	799	58	727	13	745	14	98.3	93.1
u-10	0.0648	0.0010	1.0722	0.0153	0.1200	0.0010	768	66	731	12	740	15	82.4	94.8
o-22	0.0649	0.0007	1.1174	0.0143	0.1249	0.0015	771	49	759	17	762	14	111.8	95.0
15	0.0630	0.0013	0.9661	0.0184	0.1112	0.0011	708	86	680	12	686	19	70.4	96.1
u-4	0.0643	0.0010	0.9721	0.0139	0.1097	0.0010	750	65	671	11	690	14	102.9	98.7
u-11	0.0662	0.0010	1.1474	0.0165	0.1256	0.0011	814	66	763	12	776	16	64.8	100.7
o-7	0.0642	0.0008	1.0226	0.0139	0.1156	0.0014	747	50	705	17	715	14	111.1	102.6
o-20	0.0657	0.0007	1.1242	0.0140	0.1240	0.0014	798	47	754	16	765	13	44.5	106.1
10	0.0651	0.0009	1.0303	0.0125	0.1147	0.0010	778	57	700	11	719	12	147.0	113.3
u-42	0.0650	0.0008	1.0606	0.0124	0.1183	0.0010	775	54	721	12	734	12	147.6	114.3
u-40	0.0638	0.0008	1.1121	0.0128	0.1265	0.0011	734	54	768	13	759	12	141.2	114.5
u-35	0.0654	0.0008	1.0706	0.0128	0.1187	0.0011	788	54	723	12	739	12	154.8	116.3
o-11	0.0649	0.0007	1.1217	0.0145	0.1253	0.0015	771	48	761	17	764	14	116.2	119.2
u-44	0.0664	0.0008	1.1890	0.0136	0.1299	0.0011	819	53	787	13	796	13	145.2	121.6
u-2	0.0629	0.0010	0.9262	0.0133	0.1067	0.0010	706	66	654	11	666	14	133.5	125.4
o-2	0.0645	0.0007	1.0792	0.0141	0.1213	0.0015	759	47	738	17	743	14	110.9	130.9
o-19	0.0654	0.0007	1.1405	0.0138	0.1264	0.0015	788	45	767	17	773	13	116.6	192.2
o-23	0.0661	0.0007	1.1530	0.0138	0.1265	0.0014	810	45	768	16	779	13	129.8	192.6

20		И	[зотопные			F		Th,	U,					
л⁰ зерна	²⁰⁷ Pb/ ²⁰	[%] Pb±1σ	²⁰⁷ Pb/ ²³⁵ U	J ±1σ	²⁰⁶ Pb/ ²³⁸ U	J ±1σ	²⁰⁷ Pb/ ²⁰	⁶ Pb±2σ	²⁰⁷ Pb/ ²³⁵	⁵ U±2σ	²⁰⁶ Pb/ ²³⁸	³ U±2σ	ppm	ppm
03	0.0598	0.0008	0.7821	0.0088	0.0949	0.0008	595	55	584	10	587	10	932.9	826.7
04	0.0597	0.0007	0.7625	0.0072	0.0927	0.0008	593	46	571	9	575	8	926.8	823.6
05	0.0607	0.0007	0.7658	0.0081	0.0915	0.0008	628	52	565	9	577	9	920.7	820.5
06	0.0596	0.0007	0.7993	0.0085	0.0973	0.0008	589	52	598	10	596	10	914.6	817.4
09	0.0595	0.0008	0.7708	0.0088	0.0939	0.0008	587	55	579	9	580	10	908.5	814.3
14	0.0599	0.0007	0.797	0.0079	0.0965	0.0008	601	49	594	10	595	9	902.4	811.1
19	0.0597	0.0007	0.7566	0.0077	0.092	0.0008	591	50	567	9	572	9	896.3	808.0
21	0.0601	0.0007	0.8016	0.0082	0.0968	0.0008	606	50	596	10	598	9	890.3	804.9
23	0.0598	0.0007	0.764	0.0079	0.0926	0.0008	598	51	571	9	576	9	884.2	801.8
29	0.0605	0.0007	0.7461	0.0080	0.0895	0.0008	620	52	553	9	566	9	878.1	798.7
30	0.0599	0.0007	0.7855	0.0077	0.0952	0.0008	599	49	586	9	589	9	872.0	795.6
32	0.0594	0.0007	0.7684	0.0077	0.0938	0.0008	582	50	578	9	579	9	865.9	792.5
35	0.0602	0.0007	0.7699	0.0079	0.0927	0.0008	612	51	571	9	580	9	859.8	789.4
37	0.0598	0.0007	0.7686	0.0081	0.0932	0.0008	597	52	574	9	579	9	853.7	786.3
40	0.0592	0.0007	0.8151	0.0089	0.0999	0.0009	573	53	614	10	605	10	887.3	831.6
42	0.0597	0.0007	0.8121	0.0079	0.0986	0.0008	594	48	606	10	604	9	892.9	835.4
43	0.06	0.0007	0.7788	0.0081	0.0941	0.0008	605	50	580	10	585	9	898.4	839.2
44	0.0609	0.0007	0.8149	0.0084	0.097	0.0008	636	49	597	10	605	9	904.0	843.0
46	0.0598	0.0007	0.8195	0.0080	0.0993	0.0009	598	48	611	10	608	9	909.6	846.8
47	0.0597	0.0007	0.8112	0.0079	0.0985	0.0008	594	48	606	10	603	9	915.1	850.6

Таблица 14. Результаты исследования U-Pb системы методом LA-ICP-MS в цирконах из тоналитов в пробе SB072P17.

	Изотопные отношения							ŀ		Th,	U,			
л∘ зерна	²⁰⁷ Pb/ ²⁰	⁾⁶ Pb±1σ	²⁰⁷ Pb/ ²³⁵ U	J ±1σ	²⁰⁶ Pb/ ²³⁸ U	J ±1σ	²⁰⁷ Pb/ ²⁰	⁶ Pb±2σ	²⁰⁷ Pb/ ²³⁵	⁵ U±2σ	²⁰⁶ Pb/ ²³⁸	⁸ U±2σ	ppm	ppm
50	0.0595	0.0007	0.7998	0.0079	0.0976	0.0008	584	48	600	10	597	9	920.7	854.3
51	0.0597	0.0007	0.7915	0.0078	0.0963	0.0008	591	48	592	10	592	9	926.2	858.1
52	0.0594	0.0007	0.7788	0.0086	0.0952	0.0008	580	53	586	10	585	10	931.8	861.9
53	0.0599	0.0007	0.8099	0.0082	0.098	0.0008	602	49	603	10	602	9	937.4	865.7
58	0.0596	0.0007	0.8011	0.0079	0.0975	0.0008	590	48	599	10	597	9	942.9	869.5
60	0.0607	0.0009	0.8048	0.0111	0.0963	0.0009	627	64	592	10	600	12	948.5	873.3
61	0.06	0.0007	0.7977	0.0082	0.0965	0.0008	603	50	594	10	596	9	954.0	877.0
62	0.0593	0.0007	0.7759	0.0080	0.0949	0.0008	579	50	584	10	583	9	959.6	880.8
66	0.0598	0.0007	0.7794	0.0080	0.0945	0.0008	598	50	582	10	585	9	926.9	873.6
67	0.0594	0.0007	0.766	0.0080	0.0936	0.0008	581	51	577	10	577	9	923.6	870.1
68	0.0601	0.0007	0.8043	0.0076	0.0972	0.0008	606	47	598	10	599	9	920.3	866.6
71	0.0594	0.0007	0.7726	0.0081	0.0943	0.0008	583	51	581	10	581	9	917.0	863.0
72	0.0598	0.0007	0.8138	0.0082	0.0988	0.0009	595	50	607	10	605	9	913.7	859.5
74	0.0606	0.0008	0.7859	0.0097	0.0941	0.0008	625	58	579	10	589	11	910.4	856.0
76	0.0601	0.0007	0.7974	0.0080	0.0962	0.0008	607	49	592	10	595	9	907.1	852.5
80	0.059	0.0007	0.7789	0.0078	0.0957	0.0008	568	50	589	10	585	9	903.8	849.0
89	0.0597	0.0007	0.7952	0.0082	0.0966	0.0008	594	50	594	10	594	9	900.5	845.4
90	0.06	0.0007	0.793	0.0080	0.0958	0.0008	605	49	590	10	593	9	897.2	841.9
95	0.06	0.0007	0.7885	0.0079	0.0954	0.0008	603	49	587	10	590	9	893.9	838.4
97	0.0596	0.0007	0.7882	0.0080	0.0959	0.0008	590	49	590	10	590	9	890.6	834.9
98	0.0587	0.0015	0.7573	0.0183	0.0936	0.0010	557	108	577	12	572	21	887.3	831.4

№ зерна		Ν	зотопные	отношен	ия			ŀ		Th,	U,			
	$^{207}Pb/^{206}Pb{\pm}1\sigma$		²⁰⁷ Pb/ ²³⁵ U±1σ		²⁰⁶ Pb/ ²³⁸ U±1σ		²⁰⁷ Pb/ ²⁰⁶ Pb±2σ		²⁰⁷ Pb/ ²³⁵ U±2σ		$^{206}Pb/^{238}U\pm 2\sigma$		ppm	ppm
100	0.0595	0.0007	0.7672	0.0082	0.0935	0.0008	586	52	576	10	578	9	884.0	827.8
20		И	зотопные	отношен	ия		E		Th,					
---------	----------------------------------	--------------------	--	---------	-------------------------------------	-------------------------------	-----	---------------------	---------------------------------------	----	---------------------------------------	----	----------------	--------
№ зерна	²⁰⁷ Pb/ ²⁰	⁶ Pb±1σ	²⁰⁷ Pb/ ²³⁵ U±1σ		²⁰⁶ Pb/ ²³⁸ U	$^{206}Pb/^{238}U\pm 1\sigma$		⁶⁶ Pb±2σ	207 Pb/ 235 U $\pm 2\sigma$		206 Pb/ 238 U $\pm 2\sigma$		ppm	U, ppm
3	0.0603	0.0007	0.8295	0.0087	0.0997	0.0008	615	52	613	10	613	10	109.1	231.3
4	0.0607	0.0008	0.8210	0.0095	0.0982	0.0008	627	56	604	10	609	11	138.6	156.2
30	0.0602	0.0009	0.8252	0.0107	0.0994	0.0009	611	61	611	10	611	12	169.4	202.6
41	0.0599	0.0009	0.8096	0.0115	0.0980	0.0009	601	66	603	11	602	13	26.3	145.7
43	0.0614	0.0008	0.8505	0.0106	0.1004	0.0009	654	59	617	11	625	12	78.6	141.3
44	0.0604	0.0018	0.7916	0.0226	0.0951	0.0010	617	127	586	12	592	25	3.7	11.7
45	0.0614	0.0009	0.8672	0.0122	0.1024	0.0009	654	65	629	11	634	13	19.9	54.5
48a	0.0608	0.0009	0.8403	0.0112	0.1002	0.0009	632	63	616	10	619	12	31.1	68.1
48b	0.0619	0.0009	0.8615	0.0112	0.1010	0.0009	670	61	620	10	631	12	25.4	75.3
49	0.0609	0.0007	0.8381	0.0085	0.0998	0.0008	636	50	613	10	618	9	221.6	438.5
54	0.0598	0.0008	0.8345	0.0097	0.1012	0.0009	596	56	622	10	616	11	73.1	134.3
59	0.0593	0.0014	0.7868	0.0183	0.0963	0.0010	576	106	593	11	589	21	<u>5.8</u>	17.8
61	0.0597	0.0011	0.8180	0.0146	0.0995	0.0009	591	82	611	11	607	16	10.0	44.2
63	0.0597	0.0009	0.8014	0.0117	0.0974	0.0009	592	69	599	10	598	13	9.1	56.3
64	0.0601	0.0008	0.8280	0.0099	0.0999	0.0009	608	58	614	10	613	11	65.5	100.8
65	0.0592	0.0009	0.8103	0.0115	0.0992	0.0009	576	67	610	10	603	13	29.6	53.7
66	0.0615	0.0008	0.8420	0.0095	0.0993	0.0008	657	55	610	10	620	10	59.7	127.5
67	0.0603	0.0012	0.8385	0.0159	0.1008	0.0009	616	88	619	11	618	17	25.0	46.4
68	0.0602	0.0016	0.8188	0.0215	0.0987	0.0010	610	118	607	12	607	24	<u>3.3</u>	12.9
69	0.0604	0.0009	0.8208	0.0112	0.0986	0.0009	616	65	607	10	609	12	19.2	61.4

Таблица 15. Результаты исследования U-Pb системы в цирконах методом LA-ICP-MS из лейкогранитов в пробе SB071P4.

		И	зотопные	отношен	ия			F	Возраст,	млн лет	Г		Th,	T
№ зерна	²⁰⁷ Pb/ ²⁰	[%] Pb±1σ	²⁰⁷ Pb/ ²³⁵ U±1σ		²⁰⁶ Pb/ ²³⁸ U	U ±1σ	²⁰⁷ Pb/ ²⁰	[%] Pb±2σ	²⁰⁷ Pb/ ²³	⁵ U±2σ	²⁰⁶ Pb/ ²³⁸	⁸ U±2σ	ppm	U, ppm
70	0.0588	0.0014	0.8334	0.0188	0.1029	0.0010	558	103	631	12	616	21	5.0	17.3
72	0.0608	0.0008	0.8447	0.0098	0.1008	0.0009	631	56	619	10	622	11	43.6	119.2
73	0.0621	0.0011	0.8349	0.0142	0.0976	0.0009	676	77	600	11	616	16	119.3	223.2
74	0.0593	0.0009	0.8183	0.0109	0.1000	0.0009	580	63	615	10	607	12	42.3	71.1
78	0.0638	0.0019	0.8659	0.0255	0.0984	0.0011	736	129	605	13	633	27	7.8	10.4
79	0.0594	0.0008	0.8211	0.0095	0.1003	0.0009	582	56	616	10	609	10	79.3	133.8
81	0.0606	0.0009	0.8424	0.0108	0.1009	0.0009	623	61	620	10	621	12	29.4	78.5
83	0.0621	0.0008	0.8492	0.0095	0.0993	0.0008	676	55	610	10	624	10	105.1	204.8
01	0.0609	0.0007	0.8121	0.0082	0.0966	0.0008	637	51	595	9	604	9	155.7	270.0
05	0.0618	0.0007	0.8062	0.0078	0.0946	0.0007	667	50	583	9	600	9	61.9	1619.1
08	0.0612	0.0007	0.8127	0.0080	0.0963	0.0008	647	50	593	9	604	9	129.0	538.1
38	0.0595	0.0008	0.8198	0.0102	0.0999	0.0009	587	60	614	10	608	11	43.0	101.7
46	0.0604	0.0008	0.8194	0.0091	0.0984	0.0008	619	55	605	10	608	10	127.0	180.0
47	0.0604	0.0007	0.8102	0.0080	0.0973	0.0008	618	49	598	9	603	9	212.2	413.7
50	0.0617	0.0009	0.8527	0.0119	0.1003	0.0009	662	64	616	11	626	13	166.9	356.7
51	0.0603	0.0008	0.7981	0.0090	0.0960	0.0008	613	55	591	10	596	10	25.2	147.9
55	0.0614	0.0008	0.8244	0.0090	0.0973	0.0008	655	53	599	10	611	10	151.0	191.9
57	0.0608	0.0008	0.8253	0.0100	0.0985	0.0009	631	57	606	10	611	11	153.6	250.1
58	0.0610	0.0009	0.8237	0.0115	0.0980	0.0008	638	66	603	10	610	13	32.3	76.2
62	0.0607	0.0011	0.8232	0.0136	0.0984	0.0009	628	77	605	10	610	15	25.6	59.6
71	0.0593	0.0009	0.8020	0.0106	0.0980	0.0008	579	63	603	10	598	12	22.0	84.5

№ зерна		Изотопные отношения							Возраст, млн лет						
	²⁰⁷ Pb/ ²⁰⁶ Pb±1σ		²⁰⁷ Pb/ ²³⁵ U±1σ		²⁰⁶ Pb/ ²³⁸ U±1σ		²⁰⁷ Pb/ ²⁰⁶ Pb±2σ		207 Pb/ 235 U $\pm 2\sigma$		²⁰⁶ Pb/ ²³⁸ U±2σ		ppm	U, ppm	
75	0.0607	0.0009	0.8220	0.0108	0.0982	0.0009	629	62	604	10	609	12	44.2	80.7	

N⁰	U,	Th,			Изотопн	ые отнош	Возраст, млн лет									
зерна	ppm	ppm	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰	$^{207}Pb/^{206}Pb\pm 1\sigma$		$^{206}Pb/^{238}U{\pm}1\sigma$		²⁰⁷ Pb/ ²³⁵ U±1σ		206 Pb/ 238 U $\pm 1\sigma$		²⁰⁷ Pb/ ²³⁵ U±1σ		²⁰⁷ Pb/ ²⁰⁶ Pb±1σ	
1	63	44	7719	0.0607	0.0040	0.1045	0.0015	0.0607	0.0040	641	16	638	66	628	286	
2	74	53	3290	0.0642	0.0036	0.1049	0.0013	0.0642	0.0036	643	16	667	58	749	234	
3	125	88	1422	0.0638	0.0030	0.1046	0.0014	0.0638	0.0030	641	16	662	48	734	196	
4	65	46	4477	0.0637	0.0027	0.1042	0.0015	0.0637	0.0027	641	16	662	44	732	178	
5	80	54	2772	0.0591	0.0039	0.1043	0.0014	0.0591	0.0039	639	16	625	64	573	284	
6	77	53	5843	0.0625	0.0028	0.1042	0.0015	0.0625	0.0028	640	16	651	46	691	192	
7	109	78	8394	0.0639	0.0043	0.1042	0.0014	0.0639	0.0043	639	18	661	68	738	288	
8	146	106	3640	0.0607	0.0018	0.1042	0.0014	0.0607	0.0018	639	16	637	32	630	130	
9	42	29	7452	0.0586	0.0086	0.1043	0.0014	0.0586	0.0086	640	20	621	140	551	650	
10	123	83	3037	0.0618	0.0023	0.1043	0.0014	0.0618	0.0023	639	16	646	40	668	162	
11	66	43	9027	0.0625	0.0047	0.1048	0.0015	0.0625	0.0047	643	18	653	76	690	322	

Таблица 16. Результаты исследования U-Pb системы методом SHRIMP в цирконах из зндербитов в пробе 2821.

	U,	Th,		Изотопные отношения								Возраст, млн лет						
л∘ зерна	ppm	ppm	²⁰⁶ Pb/ ²⁰⁴ Pb	$^{207}Pb/^{206}Pb{\pm}1\sigma$		²⁰⁶ Pb/ ²	²⁰⁶ Pb/ ²³⁸ U±1σ		²⁰⁷ Pb/ ²³⁵ U±1σ		³⁸ U± 1σ	²⁰⁷ Pb/ ²³⁵ U±1σ		²⁰⁷ Pb/ ²⁰⁶ Pb±1σ				
1	143	90	6135	0.0657	0.0016	0.1369	0.0018	1.240	0.037	827	10	819	17	797	52			
2	103	66	2753	0.0655	0.0027	0.1245	0.0017	1.124	0.050	757	10	765	24	789	85			
3	125	77	2792	0.0645	0.0022	0.1200	0.0016	1.068	0.040	731	9	738	20	760	71			
4	71	37	5234	0.0676	0.0045	0.1367	0.002	1.275	0.090	826	11	834	40	857	139			
5	111	56	6509	0.0657	0.0017	0.1369	0.0019	1.240	0.038	827	11	819	17	795	55			
6	183	111	81103	0.9644	0.0010	0.1201	0.0016	1.066	0.024	731	9	737	12	754	34			
7	97	42	16077	0.0662	0.0026	0.1238	0.0017	1.130	0.048	752	10	768	23	814	81			
8	113	61	5793	0.0659	0.0022	0.1368	0.0019	1.242	0.046	827	11	820	21	802	69			
9	20	8	7190	0.0652	0.0123	0.1045	0.0021	0.940	0.181	641	9	673	95	781	407			
10	27	53	109170	0.0617	0.0026	0.1044	0.0015	0.889	0.042	640	12	646	22	665	92			
11	15	32	3653	0.0679	0.0121	0.1045	0.0021	0.978	0.178	640	12	692	91	865	376			
12	161	97	5824	0.0687	0.0016	0.1367	0.0018	1.294	0.037	826	10	843	17	889	50			
13	39	91	6834	0.0594	0.0087	0.1045	0.0018	0.855	0.128	641	10	628	70	581	322			
14	184	120	12663	0.0669	0.0013	0.1367	0.0018	1.261	0.031	826	10	829	13	835	40			

Таблица 17. Результаты исследования U-Pb системы методом SHRIMP в цирконах из зндербито-гнейсов в пробе 2914.

C I	U,	Th,	Изотопные отношения								Возраст, млн лет						
Sample	ppm	ppm	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰	⁶ Pb±1σ	²⁰⁶ Pb/ ²	²³⁸ U±1σ	²⁰⁷ Pb/ ²	³⁵ U±1σ	²⁰⁶ Pb/ ²³	³⁸ U± 1σ	²⁰⁷ Pb/	²³⁵ U±1σ	²⁰⁷ Pb/ ²	²⁰⁶ Pb±1σ		
ig-1	67	84	3390	0.0643	0.037	0.121	0.017	1.072	0.065	736	10	740	32	751	122		
ig-2	77	102	3280	0.0604	0.045	0.1044	0.015	0.87	0.067	640	9	636	36	620	160		
ig-3	61	61	3685	0.0658	0.027	0.1368	0.019	1.242	0.057	827	11	820	26	801	87		
ig-4.1	233	246	6958	0.0655	0.015	0.1365	0.018	1.233	0.034	825	10	816	15	790	47		
ig-4.2	49	34	8556	0.0589	0.074	0.1046	0.017	0.849	0.109	641	10	624	60	563	275		
ig-5	24	37	1672	0.0653	0.077	0.1171	0.019	1.055	0.128	714	11	731	63	784	250		
ig-6	204	311	6104	0.0666	0.014	0.1368	0.018	1.256	0.033	826	10	826	15	825	44		
ig-7.1	74	97	80645	0.0668	0.015	0.1365	0.019	1.256	0.036	825	11	826	16	830	48		
ig-7.2	44	53	1104	0.0635	0.076	0.1042	0.017	0.912	0.112	639	10	658	60	726	256		
ig-8	133	204	6456	0.0663	0.023	0.1368	0.019	1.252	0.048	827	11	824	22	818	71		
ig-9	51	55	22070	0.0643	0.040	0.1163	0.017	1.031	0.067	709	10	719	34	751	131		
m-1	23	23	8422	0.065	0.115	0.1049	0.020	0.94	0.170	643	12	673	89	773	381		
m-2	39	65	1456	0.0579	0.053	0.1043	0.015	0.833	0.079	639	9	615	44	527	201		
m-3	24	51	7905	0.0667	0.068	0.1042	0.016	0.959	0.101	639	10	683	52	829	213		
m-4	65	73	1872	0.611	0.041	0.1048	0.015	0.883	0.061	643	9	643	33	642	143		
m-5	24	19	1217	0.0633	0.071	0.1044	0.017	0.912	0.105	640	10	658	56	719	240		
m-6	42	54	3272	0.0632	0.038	0.1041	0.015	0.906	0.057	638	9	655	31	713	128		
m-7	23	51	4705	0.0588	0.129	0.1042	0.021	0.845	0.188	639	12	622	104	561	489		

Таблица 18. Результаты исследования U-Pb системы методом SHRIMP в цирконах из зндербита в пробе AB2.